2.15/1.28 WORST_CASE(?, O(n^1)) 2.15/1.29 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.15/1.29 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.15/1.29 2.15/1.29 2.15/1.29 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.15/1.29 2.15/1.29 (0) CpxIntTrs 2.15/1.29 (1) Koat Proof [FINISHED, 67 ms] 2.15/1.29 (2) BOUNDS(1, n^1) 2.15/1.29 2.15/1.29 2.15/1.29 ---------------------------------------- 2.15/1.29 2.15/1.29 (0) 2.15/1.29 Obligation: 2.15/1.29 Complexity Int TRS consisting of the following rules: 2.15/1.29 eval_t47_start(v_.0, v_flag.0, v_n) -> Com_1(eval_t47_bb0_in(v_.0, v_flag.0, v_n)) :|: TRUE 2.15/1.29 eval_t47_bb0_in(v_.0, v_flag.0, v_n) -> Com_1(eval_t47_bb1_in(v_n, 1, v_n)) :|: TRUE 2.15/1.29 eval_t47_bb1_in(v_.0, v_flag.0, v_n) -> Com_1(eval_t47_bb2_in(v_.0, v_flag.0, v_n)) :|: v_flag.0 > 0 2.15/1.29 eval_t47_bb1_in(v_.0, v_flag.0, v_n) -> Com_1(eval_t47_bb3_in(v_.0, v_flag.0, v_n)) :|: v_flag.0 <= 0 2.15/1.29 eval_t47_bb2_in(v_.0, v_flag.0, v_n) -> Com_1(eval_t47_bb1_in(v_.0 - 1, 1, v_n)) :|: v_.0 > 0 2.15/1.29 eval_t47_bb2_in(v_.0, v_flag.0, v_n) -> Com_1(eval_t47_bb1_in(v_.0, 1, v_n)) :|: v_.0 > 0 && v_.0 <= 0 2.15/1.29 eval_t47_bb2_in(v_.0, v_flag.0, v_n) -> Com_1(eval_t47_bb1_in(v_.0 - 1, 0, v_n)) :|: v_.0 <= 0 && v_.0 > 0 2.15/1.29 eval_t47_bb2_in(v_.0, v_flag.0, v_n) -> Com_1(eval_t47_bb1_in(v_.0, 0, v_n)) :|: v_.0 <= 0 2.15/1.29 eval_t47_bb3_in(v_.0, v_flag.0, v_n) -> Com_1(eval_t47_stop(v_.0, v_flag.0, v_n)) :|: TRUE 2.15/1.29 2.15/1.29 The start-symbols are:[eval_t47_start_3] 2.15/1.29 2.15/1.29 2.15/1.29 ---------------------------------------- 2.15/1.29 2.15/1.29 (1) Koat Proof (FINISHED) 2.15/1.29 YES(?, 2*ar_1 + 8) 2.15/1.29 2.15/1.29 2.15/1.29 2.15/1.29 Initial complexity problem: 2.15/1.29 2.15/1.29 1: T: 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47start(ar_0, ar_1, ar_2) -> Com_1(evalt47bb0in(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb0in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_1, ar_1, 1)) 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0, ar_1, 1)) [ ar_0 >= 1 /\ 0 >= ar_0 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0 - 1, ar_1, 0)) [ 0 >= ar_0 /\ ar_0 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb3in(ar_0, ar_1, ar_2) -> Com_1(evalt47stop(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalt47start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.29 2.15/1.29 start location: koat_start 2.15/1.29 2.15/1.29 leaf cost: 0 2.15/1.29 2.15/1.29 2.15/1.29 2.15/1.29 Testing for reachability in the complexity graph removes the following transitions from problem 1: 2.15/1.29 2.15/1.29 evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0, ar_1, 1)) [ ar_0 >= 1 /\ 0 >= ar_0 ] 2.15/1.29 2.15/1.29 evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0 - 1, ar_1, 0)) [ 0 >= ar_0 /\ ar_0 >= 1 ] 2.15/1.29 2.15/1.29 We thus obtain the following problem: 2.15/1.29 2.15/1.29 2: T: 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb3in(ar_0, ar_1, ar_2) -> Com_1(evalt47stop(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb0in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_1, ar_1, 1)) 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47start(ar_0, ar_1, ar_2) -> Com_1(evalt47bb0in(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalt47start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.29 2.15/1.29 start location: koat_start 2.15/1.29 2.15/1.29 leaf cost: 0 2.15/1.29 2.15/1.29 2.15/1.29 2.15/1.29 Repeatedly propagating knowledge in problem 2 produces the following problem: 2.15/1.29 2.15/1.29 3: T: 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb3in(ar_0, ar_1, ar_2) -> Com_1(evalt47stop(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47bb0in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_1, ar_1, 1)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47start(ar_0, ar_1, ar_2) -> Com_1(evalt47bb0in(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalt47start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.29 2.15/1.29 start location: koat_start 2.15/1.29 2.15/1.29 leaf cost: 0 2.15/1.29 2.15/1.29 2.15/1.29 2.15/1.29 A polynomial rank function with 2.15/1.29 2.15/1.29 Pol(evalt47bb3in) = 1 2.15/1.29 2.15/1.29 Pol(evalt47stop) = 0 2.15/1.29 2.15/1.29 Pol(evalt47bb1in) = 2 2.15/1.29 2.15/1.29 Pol(evalt47bb2in) = 2 2.15/1.29 2.15/1.29 Pol(evalt47bb0in) = 2 2.15/1.29 2.15/1.29 Pol(evalt47start) = 2 2.15/1.29 2.15/1.29 Pol(koat_start) = 2 2.15/1.29 2.15/1.29 orients all transitions weakly and the transitions 2.15/1.29 2.15/1.29 evalt47bb3in(ar_0, ar_1, ar_2) -> Com_1(evalt47stop(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.15/1.29 2.15/1.29 strictly and produces the following problem: 2.15/1.29 2.15/1.29 4: T: 2.15/1.29 2.15/1.29 (Comp: 2, Cost: 1) evalt47bb3in(ar_0, ar_1, ar_2) -> Com_1(evalt47stop(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 2, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47bb0in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_1, ar_1, 1)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47start(ar_0, ar_1, ar_2) -> Com_1(evalt47bb0in(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalt47start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.29 2.15/1.29 start location: koat_start 2.15/1.29 2.15/1.29 leaf cost: 0 2.15/1.29 2.15/1.29 2.15/1.29 2.15/1.29 A polynomial rank function with 2.15/1.29 2.15/1.29 Pol(evalt47bb3in) = V_3 2.15/1.29 2.15/1.29 Pol(evalt47stop) = V_3 2.15/1.29 2.15/1.29 Pol(evalt47bb1in) = V_3 2.15/1.29 2.15/1.29 Pol(evalt47bb2in) = 1 2.15/1.29 2.15/1.29 Pol(evalt47bb0in) = 1 2.15/1.29 2.15/1.29 Pol(evalt47start) = 1 2.15/1.29 2.15/1.29 Pol(koat_start) = 1 2.15/1.29 2.15/1.29 orients all transitions weakly and the transition 2.15/1.29 2.15/1.29 evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 2.15/1.29 2.15/1.29 strictly and produces the following problem: 2.15/1.29 2.15/1.29 5: T: 2.15/1.29 2.15/1.29 (Comp: 2, Cost: 1) evalt47bb3in(ar_0, ar_1, ar_2) -> Com_1(evalt47stop(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 2, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47bb0in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_1, ar_1, 1)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47start(ar_0, ar_1, ar_2) -> Com_1(evalt47bb0in(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalt47start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.29 2.15/1.29 start location: koat_start 2.15/1.29 2.15/1.29 leaf cost: 0 2.15/1.29 2.15/1.29 2.15/1.29 2.15/1.29 A polynomial rank function with 2.15/1.29 2.15/1.29 Pol(evalt47bb3in) = V_1 2.15/1.29 2.15/1.29 Pol(evalt47stop) = V_1 2.15/1.29 2.15/1.29 Pol(evalt47bb1in) = V_1 2.15/1.29 2.15/1.29 Pol(evalt47bb2in) = V_1 2.15/1.29 2.15/1.29 Pol(evalt47bb0in) = V_2 2.15/1.29 2.15/1.29 Pol(evalt47start) = V_2 2.15/1.29 2.15/1.29 Pol(koat_start) = V_2 2.15/1.29 2.15/1.29 orients all transitions weakly and the transition 2.15/1.29 2.15/1.29 evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 2.15/1.29 2.15/1.29 strictly and produces the following problem: 2.15/1.29 2.15/1.29 6: T: 2.15/1.29 2.15/1.29 (Comp: 2, Cost: 1) evalt47bb3in(ar_0, ar_1, ar_2) -> Com_1(evalt47stop(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 2, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 2.15/1.29 2.15/1.29 (Comp: ar_1, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: ?, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47bb0in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_1, ar_1, 1)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47start(ar_0, ar_1, ar_2) -> Com_1(evalt47bb0in(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalt47start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.29 2.15/1.29 start location: koat_start 2.15/1.29 2.15/1.29 leaf cost: 0 2.15/1.29 2.15/1.29 2.15/1.29 2.15/1.29 Repeatedly propagating knowledge in problem 6 produces the following problem: 2.15/1.29 2.15/1.29 7: T: 2.15/1.29 2.15/1.29 (Comp: 2, Cost: 1) evalt47bb3in(ar_0, ar_1, ar_2) -> Com_1(evalt47stop(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 2, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 2.15/1.29 2.15/1.29 (Comp: ar_1, Cost: 1) evalt47bb2in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: ar_1 + 1, Cost: 1) evalt47bb1in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47bb0in(ar_0, ar_1, ar_2) -> Com_1(evalt47bb1in(ar_1, ar_1, 1)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 1) evalt47start(ar_0, ar_1, ar_2) -> Com_1(evalt47bb0in(ar_0, ar_1, ar_2)) 2.15/1.29 2.15/1.29 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalt47start(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.29 2.15/1.29 start location: koat_start 2.15/1.29 2.15/1.29 leaf cost: 0 2.15/1.29 2.15/1.29 2.15/1.29 2.15/1.29 Complexity upper bound 2*ar_1 + 8 2.15/1.29 2.15/1.29 2.15/1.29 2.15/1.29 Time: 0.083 sec (SMT: 0.076 sec) 2.15/1.29 2.15/1.29 2.15/1.29 ---------------------------------------- 2.15/1.29 2.15/1.29 (2) 2.15/1.29 BOUNDS(1, n^1) 2.28/1.32 EOF