2.14/1.31 WORST_CASE(?, O(n^1)) 2.14/1.32 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.14/1.32 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.14/1.32 2.14/1.32 2.14/1.32 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.14/1.32 2.14/1.32 (0) CpxIntTrs 2.14/1.32 (1) Koat Proof [FINISHED, 83 ms] 2.14/1.32 (2) BOUNDS(1, n^1) 2.14/1.32 2.14/1.32 2.14/1.32 ---------------------------------------- 2.14/1.32 2.14/1.32 (0) 2.14/1.32 Obligation: 2.14/1.32 Complexity Int TRS consisting of the following rules: 2.14/1.32 eval_foo_start(v_.0, v_res, v_x, v_y) -> Com_1(eval_foo_bb0_in(v_.0, v_res, v_x, v_y)) :|: TRUE 2.14/1.32 eval_foo_bb0_in(v_.0, v_res, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_x, v_res, v_x, v_y)) :|: TRUE 2.14/1.32 eval_foo_bb1_in(v_.0, v_res, v_x, v_y) -> Com_1(eval_foo_bb2_in(v_.0, v_res, v_x, v_y)) :|: v_.0 >= v_y && v_y > 0 2.14/1.32 eval_foo_bb1_in(v_.0, v_res, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.0, v_res, v_x, v_y)) :|: v_.0 < v_y 2.14/1.32 eval_foo_bb1_in(v_.0, v_res, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.0, v_res, v_x, v_y)) :|: v_y <= 0 2.14/1.32 eval_foo_bb2_in(v_.0, v_res, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0 - v_y, v_res, v_x, v_y)) :|: TRUE 2.14/1.32 eval_foo_bb3_in(v_.0, v_res, v_x, v_y) -> Com_1(eval_foo_stop(v_.0, v_res, v_x, v_y)) :|: TRUE 2.14/1.32 2.14/1.32 The start-symbols are:[eval_foo_start_4] 2.14/1.32 2.14/1.32 2.14/1.32 ---------------------------------------- 2.14/1.32 2.14/1.32 (1) Koat Proof (FINISHED) 2.14/1.32 YES(?, 2*ar_1 + 8) 2.14/1.32 2.14/1.32 2.14/1.32 2.14/1.32 Initial complexity problem: 2.14/1.32 2.14/1.32 1: T: 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 /\ ar_2 >= 1 ] 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 - ar_2, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.14/1.32 2.14/1.32 start location: koat_start 2.14/1.32 2.14/1.32 leaf cost: 0 2.14/1.32 2.14/1.32 2.14/1.32 2.14/1.32 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.14/1.32 2.14/1.32 2: T: 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 /\ ar_2 >= 1 ] 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 - ar_2, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.14/1.32 2.14/1.32 start location: koat_start 2.14/1.32 2.14/1.32 leaf cost: 0 2.14/1.32 2.14/1.32 2.14/1.32 2.14/1.32 A polynomial rank function with 2.14/1.32 2.14/1.32 Pol(evalfoostart) = 2 2.14/1.32 2.14/1.32 Pol(evalfoobb0in) = 2 2.14/1.32 2.14/1.32 Pol(evalfoobb1in) = 2 2.14/1.32 2.14/1.32 Pol(evalfoobb2in) = 2 2.14/1.32 2.14/1.32 Pol(evalfoobb3in) = 1 2.14/1.32 2.14/1.32 Pol(evalfoostop) = 0 2.14/1.32 2.14/1.32 Pol(koat_start) = 2 2.14/1.32 2.14/1.32 orients all transitions weakly and the transitions 2.14/1.32 2.14/1.32 evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 2.14/1.32 2.14/1.32 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.14/1.32 2.14/1.32 strictly and produces the following problem: 2.14/1.32 2.14/1.32 3: T: 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 /\ ar_2 >= 1 ] 2.14/1.32 2.14/1.32 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 2.14/1.32 2.14/1.32 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 - ar_2, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.14/1.32 2.14/1.32 start location: koat_start 2.14/1.32 2.14/1.32 leaf cost: 0 2.14/1.32 2.14/1.32 2.14/1.32 2.14/1.32 A polynomial rank function with 2.14/1.32 2.14/1.32 Pol(evalfoostart) = V_2 2.14/1.32 2.14/1.32 Pol(evalfoobb0in) = V_2 2.14/1.32 2.14/1.32 Pol(evalfoobb1in) = V_1 2.14/1.32 2.14/1.32 Pol(evalfoobb2in) = V_1 - V_3 2.14/1.32 2.14/1.32 Pol(evalfoobb3in) = V_1 2.14/1.32 2.14/1.32 Pol(evalfoostop) = V_1 2.14/1.32 2.14/1.32 Pol(koat_start) = V_2 2.14/1.32 2.14/1.32 orients all transitions weakly and the transition 2.14/1.32 2.14/1.32 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 /\ ar_2 >= 1 ] 2.14/1.32 2.14/1.32 strictly and produces the following problem: 2.14/1.32 2.14/1.32 4: T: 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: ar_1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 /\ ar_2 >= 1 ] 2.14/1.32 2.14/1.32 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 2.14/1.32 2.14/1.32 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.14/1.32 2.14/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 - ar_2, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.14/1.32 2.14/1.32 start location: koat_start 2.14/1.32 2.14/1.32 leaf cost: 0 2.14/1.32 2.14/1.32 2.14/1.32 2.14/1.32 Repeatedly propagating knowledge in problem 4 produces the following problem: 2.14/1.32 2.14/1.32 5: T: 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: ar_1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 /\ ar_2 >= 1 ] 2.14/1.32 2.14/1.32 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 2.14/1.32 2.14/1.32 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.14/1.32 2.14/1.32 (Comp: ar_1, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 - ar_2, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.14/1.32 2.14/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.14/1.32 2.14/1.32 start location: koat_start 2.14/1.32 2.14/1.32 leaf cost: 0 2.14/1.32 2.14/1.32 2.14/1.32 2.14/1.32 Complexity upper bound 2*ar_1 + 8 2.14/1.32 2.14/1.32 2.14/1.32 2.14/1.32 Time: 0.082 sec (SMT: 0.076 sec) 2.14/1.32 2.14/1.32 2.14/1.32 ---------------------------------------- 2.14/1.32 2.14/1.32 (2) 2.14/1.32 BOUNDS(1, n^1) 2.30/1.35 EOF