2.13/1.22 WORST_CASE(?, O(1)) 2.13/1.23 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.13/1.23 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.13/1.23 2.13/1.23 2.13/1.23 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 2.13/1.23 2.13/1.23 (0) CpxIntTrs 2.13/1.23 (1) Koat Proof [FINISHED, 74 ms] 2.13/1.23 (2) BOUNDS(1, 1) 2.13/1.23 2.13/1.23 2.13/1.23 ---------------------------------------- 2.13/1.23 2.13/1.23 (0) 2.13/1.23 Obligation: 2.13/1.23 Complexity Int TRS consisting of the following rules: 2.13/1.23 eval_foo_start(v_.0, v_c, v_i) -> Com_1(eval_foo_bb0_in(v_.0, v_c, v_i)) :|: TRUE 2.13/1.23 eval_foo_bb0_in(v_.0, v_c, v_i) -> Com_1(eval_foo_bb1_in(0, v_c, v_i)) :|: TRUE 2.13/1.23 eval_foo_bb1_in(v_.0, v_c, v_i) -> Com_1(eval_foo_bb2_in(v_.0, v_c, v_i)) :|: v_.0 < 20 2.13/1.23 eval_foo_bb1_in(v_.0, v_c, v_i) -> Com_1(eval_foo_bb3_in(v_.0, v_c, v_i)) :|: v_.0 >= 20 2.13/1.23 eval_foo_bb2_in(v_.0, v_c, v_i) -> Com_1(eval_foo_bb1_in(v_.0 + 1, v_c, v_i)) :|: v_.0 + 1 <= 10 2.13/1.23 eval_foo_bb2_in(v_.0, v_c, v_i) -> Com_1(eval_foo_bb1_in(v_.0 + 1, v_c, v_i)) :|: v_.0 + 1 > 10 2.13/1.23 eval_foo_bb3_in(v_.0, v_c, v_i) -> Com_1(eval_foo_stop(v_.0, v_c, v_i)) :|: TRUE 2.13/1.23 2.13/1.23 The start-symbols are:[eval_foo_start_3] 2.13/1.23 2.13/1.23 2.13/1.23 ---------------------------------------- 2.13/1.23 2.13/1.23 (1) Koat Proof (FINISHED) 2.13/1.23 YES(?, 123) 2.13/1.23 2.13/1.23 2.13/1.23 2.13/1.23 Initial complexity problem: 2.13/1.23 2.13/1.23 1: T: 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoostart(ar_0) -> Com_1(evalfoobb0in(ar_0)) 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb0in(ar_0) -> Com_1(evalfoobb1in(0)) 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb1in(ar_0) -> Com_1(evalfoobb2in(ar_0)) [ 19 >= ar_0 ] 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb1in(ar_0) -> Com_1(evalfoobb3in(ar_0)) [ ar_0 >= 20 ] 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ 9 >= ar_0 ] 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ ar_0 >= 10 ] 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb3in(ar_0) -> Com_1(evalfoostop(ar_0)) 2.13/1.23 2.13/1.23 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(evalfoostart(ar_0)) [ 0 <= 0 ] 2.13/1.23 2.13/1.23 start location: koat_start 2.13/1.23 2.13/1.23 leaf cost: 0 2.13/1.23 2.13/1.23 2.13/1.23 2.13/1.23 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.13/1.23 2.13/1.23 2: T: 2.13/1.23 2.13/1.23 (Comp: 1, Cost: 1) evalfoostart(ar_0) -> Com_1(evalfoobb0in(ar_0)) 2.13/1.23 2.13/1.23 (Comp: 1, Cost: 1) evalfoobb0in(ar_0) -> Com_1(evalfoobb1in(0)) 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb1in(ar_0) -> Com_1(evalfoobb2in(ar_0)) [ 19 >= ar_0 ] 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb1in(ar_0) -> Com_1(evalfoobb3in(ar_0)) [ ar_0 >= 20 ] 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ 9 >= ar_0 ] 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ ar_0 >= 10 ] 2.13/1.23 2.13/1.23 (Comp: ?, Cost: 1) evalfoobb3in(ar_0) -> Com_1(evalfoostop(ar_0)) 2.13/1.23 2.13/1.23 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(evalfoostart(ar_0)) [ 0 <= 0 ] 2.13/1.23 2.13/1.23 start location: koat_start 2.13/1.23 2.13/1.23 leaf cost: 0 2.13/1.23 2.13/1.23 2.13/1.23 2.13/1.23 A polynomial rank function with 2.13/1.23 2.13/1.23 Pol(evalfoostart) = 2 2.13/1.23 2.13/1.23 Pol(evalfoobb0in) = 2 2.13/1.23 2.13/1.23 Pol(evalfoobb1in) = 2 2.13/1.23 2.13/1.23 Pol(evalfoobb2in) = 2 2.13/1.23 2.13/1.23 Pol(evalfoobb3in) = 1 2.13/1.23 2.13/1.23 Pol(evalfoostop) = 0 2.13/1.23 2.13/1.23 Pol(koat_start) = 2 2.13/1.23 2.13/1.23 orients all transitions weakly and the transitions 2.13/1.23 2.13/1.23 evalfoobb3in(ar_0) -> Com_1(evalfoostop(ar_0)) 2.13/1.23 2.13/1.23 evalfoobb1in(ar_0) -> Com_1(evalfoobb3in(ar_0)) [ ar_0 >= 20 ] 2.13/1.23 2.13/1.23 strictly and produces the following problem: 2.19/1.23 2.19/1.23 3: T: 2.19/1.23 2.19/1.23 (Comp: 1, Cost: 1) evalfoostart(ar_0) -> Com_1(evalfoobb0in(ar_0)) 2.19/1.23 2.19/1.23 (Comp: 1, Cost: 1) evalfoobb0in(ar_0) -> Com_1(evalfoobb1in(0)) 2.19/1.23 2.19/1.23 (Comp: ?, Cost: 1) evalfoobb1in(ar_0) -> Com_1(evalfoobb2in(ar_0)) [ 19 >= ar_0 ] 2.19/1.23 2.19/1.23 (Comp: 2, Cost: 1) evalfoobb1in(ar_0) -> Com_1(evalfoobb3in(ar_0)) [ ar_0 >= 20 ] 2.19/1.23 2.19/1.23 (Comp: ?, Cost: 1) evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ 9 >= ar_0 ] 2.19/1.23 2.19/1.23 (Comp: ?, Cost: 1) evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ ar_0 >= 10 ] 2.19/1.23 2.19/1.23 (Comp: 2, Cost: 1) evalfoobb3in(ar_0) -> Com_1(evalfoostop(ar_0)) 2.19/1.23 2.19/1.23 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(evalfoostart(ar_0)) [ 0 <= 0 ] 2.19/1.23 2.19/1.23 start location: koat_start 2.19/1.23 2.19/1.23 leaf cost: 0 2.19/1.23 2.19/1.23 2.19/1.23 2.19/1.23 A polynomial rank function with 2.19/1.23 2.19/1.23 Pol(evalfoostart) = 39 2.19/1.23 2.19/1.23 Pol(evalfoobb0in) = 39 2.19/1.23 2.19/1.23 Pol(evalfoobb1in) = -2*V_1 + 39 2.19/1.23 2.19/1.23 Pol(evalfoobb2in) = -2*V_1 + 38 2.19/1.23 2.19/1.23 Pol(evalfoobb3in) = -2*V_1 2.19/1.23 2.19/1.23 Pol(evalfoostop) = -2*V_1 2.19/1.23 2.19/1.23 Pol(koat_start) = 39 2.19/1.23 2.19/1.23 orients all transitions weakly and the transitions 2.19/1.23 2.19/1.23 evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ 9 >= ar_0 ] 2.19/1.23 2.19/1.23 evalfoobb1in(ar_0) -> Com_1(evalfoobb2in(ar_0)) [ 19 >= ar_0 ] 2.19/1.23 2.19/1.23 strictly and produces the following problem: 2.19/1.23 2.19/1.23 4: T: 2.19/1.23 2.19/1.23 (Comp: 1, Cost: 1) evalfoostart(ar_0) -> Com_1(evalfoobb0in(ar_0)) 2.19/1.23 2.19/1.23 (Comp: 1, Cost: 1) evalfoobb0in(ar_0) -> Com_1(evalfoobb1in(0)) 2.19/1.23 2.19/1.23 (Comp: 39, Cost: 1) evalfoobb1in(ar_0) -> Com_1(evalfoobb2in(ar_0)) [ 19 >= ar_0 ] 2.19/1.23 2.19/1.23 (Comp: 2, Cost: 1) evalfoobb1in(ar_0) -> Com_1(evalfoobb3in(ar_0)) [ ar_0 >= 20 ] 2.19/1.23 2.19/1.23 (Comp: 39, Cost: 1) evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ 9 >= ar_0 ] 2.19/1.23 2.19/1.23 (Comp: ?, Cost: 1) evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ ar_0 >= 10 ] 2.19/1.23 2.19/1.23 (Comp: 2, Cost: 1) evalfoobb3in(ar_0) -> Com_1(evalfoostop(ar_0)) 2.19/1.23 2.19/1.23 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(evalfoostart(ar_0)) [ 0 <= 0 ] 2.19/1.23 2.19/1.23 start location: koat_start 2.19/1.23 2.19/1.23 leaf cost: 0 2.19/1.23 2.19/1.23 2.19/1.23 2.19/1.23 Repeatedly propagating knowledge in problem 4 produces the following problem: 2.19/1.23 2.19/1.23 5: T: 2.19/1.23 2.19/1.23 (Comp: 1, Cost: 1) evalfoostart(ar_0) -> Com_1(evalfoobb0in(ar_0)) 2.19/1.23 2.19/1.23 (Comp: 1, Cost: 1) evalfoobb0in(ar_0) -> Com_1(evalfoobb1in(0)) 2.19/1.23 2.19/1.23 (Comp: 39, Cost: 1) evalfoobb1in(ar_0) -> Com_1(evalfoobb2in(ar_0)) [ 19 >= ar_0 ] 2.19/1.23 2.19/1.23 (Comp: 2, Cost: 1) evalfoobb1in(ar_0) -> Com_1(evalfoobb3in(ar_0)) [ ar_0 >= 20 ] 2.19/1.23 2.19/1.23 (Comp: 39, Cost: 1) evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ 9 >= ar_0 ] 2.19/1.23 2.19/1.23 (Comp: 39, Cost: 1) evalfoobb2in(ar_0) -> Com_1(evalfoobb1in(ar_0 + 1)) [ ar_0 >= 10 ] 2.19/1.23 2.19/1.23 (Comp: 2, Cost: 1) evalfoobb3in(ar_0) -> Com_1(evalfoostop(ar_0)) 2.19/1.23 2.19/1.23 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(evalfoostart(ar_0)) [ 0 <= 0 ] 2.19/1.23 2.19/1.23 start location: koat_start 2.19/1.23 2.19/1.23 leaf cost: 0 2.19/1.23 2.19/1.23 2.19/1.23 2.19/1.23 Complexity upper bound 123 2.19/1.23 2.19/1.23 2.19/1.23 2.19/1.23 Time: 0.054 sec (SMT: 0.051 sec) 2.19/1.23 2.19/1.23 2.19/1.23 ---------------------------------------- 2.19/1.23 2.19/1.23 (2) 2.19/1.23 BOUNDS(1, 1) 2.19/1.25 EOF