1.99/1.36 WORST_CASE(?, O(n^1)) 1.99/1.37 proof of /export/starexec/sandbox2/output/output_files/bench.koat 1.99/1.37 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1.99/1.37 1.99/1.37 1.99/1.37 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 1.99/1.37 1.99/1.37 (0) CpxIntTrs 1.99/1.37 (1) Koat Proof [FINISHED, 71 ms] 1.99/1.37 (2) BOUNDS(1, n^1) 1.99/1.37 1.99/1.37 1.99/1.37 ---------------------------------------- 1.99/1.37 1.99/1.37 (0) 1.99/1.37 Obligation: 1.99/1.37 Complexity Int TRS consisting of the following rules: 1.99/1.37 eval_foo_start(v_.0, v_x, v_y) -> Com_1(eval_foo_bb0_in(v_.0, v_x, v_y)) :|: TRUE 1.99/1.37 eval_foo_bb0_in(v_.0, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_y, v_x, v_y)) :|: TRUE 1.99/1.37 eval_foo_bb1_in(v_.0, v_x, v_y) -> Com_1(eval_foo_bb2_in(v_.0, v_x, v_y)) :|: v_x > v_.0 1.99/1.37 eval_foo_bb1_in(v_.0, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.0, v_x, v_y)) :|: v_x <= v_.0 1.99/1.37 eval_foo_bb2_in(v_.0, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0 + 1, v_x, v_y)) :|: TRUE 1.99/1.37 eval_foo_bb3_in(v_.0, v_x, v_y) -> Com_1(eval_foo_stop(v_.0, v_x, v_y)) :|: TRUE 1.99/1.37 1.99/1.37 The start-symbols are:[eval_foo_start_3] 1.99/1.37 1.99/1.37 1.99/1.37 ---------------------------------------- 1.99/1.37 1.99/1.37 (1) Koat Proof (FINISHED) 1.99/1.37 YES(?, 2*ar_1 + 2*ar_2 + 8) 1.99/1.37 1.99/1.37 1.99/1.37 1.99/1.37 Initial complexity problem: 1.99/1.37 1.99/1.37 1: T: 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 1.99/1.37 1.99/1.37 start location: koat_start 1.99/1.37 1.99/1.37 leaf cost: 0 1.99/1.37 1.99/1.37 1.99/1.37 1.99/1.37 Repeatedly propagating knowledge in problem 1 produces the following problem: 1.99/1.37 1.99/1.37 2: T: 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 1.99/1.37 1.99/1.37 start location: koat_start 1.99/1.37 1.99/1.37 leaf cost: 0 1.99/1.37 1.99/1.37 1.99/1.37 1.99/1.37 A polynomial rank function with 1.99/1.37 1.99/1.37 Pol(evalfoostart) = 2 1.99/1.37 1.99/1.37 Pol(evalfoobb0in) = 2 1.99/1.37 1.99/1.37 Pol(evalfoobb1in) = 2 1.99/1.37 1.99/1.37 Pol(evalfoobb2in) = 2 1.99/1.37 1.99/1.37 Pol(evalfoobb3in) = 1 1.99/1.37 1.99/1.37 Pol(evalfoostop) = 0 1.99/1.37 1.99/1.37 Pol(koat_start) = 2 1.99/1.37 1.99/1.37 orients all transitions weakly and the transitions 1.99/1.37 1.99/1.37 evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 1.99/1.37 1.99/1.37 strictly and produces the following problem: 1.99/1.37 1.99/1.37 3: T: 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 1.99/1.37 1.99/1.37 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 1.99/1.37 1.99/1.37 start location: koat_start 1.99/1.37 1.99/1.37 leaf cost: 0 1.99/1.37 1.99/1.37 1.99/1.37 1.99/1.37 A polynomial rank function with 1.99/1.37 1.99/1.37 Pol(evalfoostart) = -V_2 + V_3 + 1 1.99/1.37 1.99/1.37 Pol(evalfoobb0in) = -V_2 + V_3 + 1 1.99/1.37 1.99/1.37 Pol(evalfoobb1in) = -V_1 + V_3 + 1 1.99/1.37 1.99/1.37 Pol(evalfoobb2in) = -V_1 + V_3 1.99/1.37 1.99/1.37 Pol(evalfoobb3in) = -V_1 + V_3 1.99/1.37 1.99/1.37 Pol(evalfoostop) = -V_1 + V_3 1.99/1.37 1.99/1.37 Pol(koat_start) = -V_2 + V_3 + 1 1.99/1.37 1.99/1.37 orients all transitions weakly and the transition 1.99/1.37 1.99/1.37 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 1.99/1.37 1.99/1.37 strictly and produces the following problem: 1.99/1.37 1.99/1.37 4: T: 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: ar_1 + ar_2 + 1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 1.99/1.37 1.99/1.37 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 1.99/1.37 1.99/1.37 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 1.99/1.37 1.99/1.37 start location: koat_start 1.99/1.37 1.99/1.37 leaf cost: 0 1.99/1.37 1.99/1.37 1.99/1.37 1.99/1.37 Repeatedly propagating knowledge in problem 4 produces the following problem: 1.99/1.37 1.99/1.37 5: T: 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: ar_1 + ar_2 + 1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] 1.99/1.37 1.99/1.37 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 1.99/1.37 1.99/1.37 (Comp: ar_1 + ar_2 + 1, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 1.99/1.37 1.99/1.37 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 1.99/1.37 1.99/1.37 start location: koat_start 1.99/1.37 1.99/1.37 leaf cost: 0 1.99/1.37 1.99/1.37 1.99/1.37 1.99/1.37 Complexity upper bound 2*ar_1 + 2*ar_2 + 8 1.99/1.37 1.99/1.37 1.99/1.37 1.99/1.37 Time: 0.049 sec (SMT: 0.043 sec) 1.99/1.37 1.99/1.37 1.99/1.37 ---------------------------------------- 1.99/1.37 1.99/1.37 (2) 1.99/1.37 BOUNDS(1, n^1) 2.03/1.39 EOF