2.29/1.41 WORST_CASE(?, O(n^1)) 2.40/1.42 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.40/1.42 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.40/1.42 2.40/1.42 2.40/1.42 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.40/1.42 2.40/1.42 (0) CpxIntTrs 2.40/1.42 (1) Koat Proof [FINISHED, 278 ms] 2.40/1.42 (2) BOUNDS(1, n^1) 2.40/1.42 2.40/1.42 2.40/1.42 ---------------------------------------- 2.40/1.42 2.40/1.42 (0) 2.40/1.42 Obligation: 2.40/1.42 Complexity Int TRS consisting of the following rules: 2.40/1.42 eval_foo_start(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb0_in(v_.01, v_.02, v_c, v_x, v_y, v_z)) :|: TRUE 2.40/1.42 eval_foo_bb0_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_x, v_z, v_c, v_x, v_y, v_z)) :|: TRUE 2.40/1.42 eval_foo_bb1_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb2_in(v_.01, v_.02, v_c, v_x, v_y, v_z)) :|: v_.01 < v_y 2.40/1.42 eval_foo_bb1_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb3_in(v_.01, v_.02, v_c, v_x, v_y, v_z)) :|: v_.01 >= v_y 2.40/1.42 eval_foo_bb2_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_.01 + 1, v_.02, v_c, v_x, v_y, v_z)) :|: v_.01 < v_.02 2.40/1.42 eval_foo_bb2_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_.01, v_.02, v_c, v_x, v_y, v_z)) :|: v_.01 < v_.02 && v_.01 >= v_.02 2.40/1.42 eval_foo_bb2_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_.01 + 1, v_.02 + 1, v_c, v_x, v_y, v_z)) :|: v_.01 >= v_.02 && v_.01 < v_.02 2.40/1.42 eval_foo_bb2_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_.01, v_.02 + 1, v_c, v_x, v_y, v_z)) :|: v_.01 >= v_.02 2.40/1.42 eval_foo_bb3_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_stop(v_.01, v_.02, v_c, v_x, v_y, v_z)) :|: TRUE 2.40/1.42 2.40/1.42 The start-symbols are:[eval_foo_start_6] 2.40/1.42 2.40/1.42 2.40/1.42 ---------------------------------------- 2.40/1.42 2.40/1.42 (1) Koat Proof (FINISHED) 2.40/1.42 YES(?, 2*ar_3 + 4*ar_4 + 2*ar_1 + 7) 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 Initial complexity problem: 2.40/1.42 2.40/1.42 1: T: 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 >= ar_4 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 /\ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 /\ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.40/1.42 2.40/1.42 start location: koat_start 2.40/1.42 2.40/1.42 leaf cost: 0 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 Testing for reachability in the complexity graph removes the following transitions from problem 1: 2.40/1.42 2.40/1.42 evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 /\ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 /\ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 We thus obtain the following problem: 2.40/1.42 2.40/1.42 2: T: 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 >= ar_4 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.40/1.42 2.40/1.42 start location: koat_start 2.40/1.42 2.40/1.42 leaf cost: 0 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 Repeatedly propagating knowledge in problem 2 produces the following problem: 2.40/1.42 2.40/1.42 3: T: 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 >= ar_4 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.40/1.42 2.40/1.42 start location: koat_start 2.40/1.42 2.40/1.42 leaf cost: 0 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 A polynomial rank function with 2.40/1.42 2.40/1.42 Pol(evalfoobb3in) = 1 2.40/1.42 2.40/1.42 Pol(evalfoostop) = 0 2.40/1.42 2.40/1.42 Pol(evalfoobb2in) = 2 2.40/1.42 2.40/1.42 Pol(evalfoobb1in) = 2 2.40/1.42 2.40/1.42 Pol(evalfoobb0in) = 2 2.40/1.42 2.40/1.42 Pol(evalfoostart) = 2 2.40/1.42 2.40/1.42 Pol(koat_start) = 2 2.40/1.42 2.40/1.42 orients all transitions weakly and the transitions 2.40/1.42 2.40/1.42 evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 >= ar_4 ] 2.40/1.42 2.40/1.42 strictly and produces the following problem: 2.40/1.42 2.40/1.42 4: T: 2.40/1.42 2.40/1.42 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 >= ar_4 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.40/1.42 2.40/1.42 start location: koat_start 2.40/1.42 2.40/1.42 leaf cost: 0 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 Applied AI with 'oct' on problem 4 to obtain the following invariants: 2.40/1.42 2.40/1.42 For symbol evalfoobb1in: X_3 - X_4 >= 0 /\ X_1 - X_2 >= 0 2.40/1.42 2.40/1.42 For symbol evalfoobb2in: -X_2 + X_5 - 1 >= 0 /\ -X_1 + X_5 - 1 >= 0 /\ X_3 - X_4 >= 0 /\ X_1 - X_2 >= 0 2.40/1.42 2.40/1.42 For symbol evalfoobb3in: X_1 - X_5 >= 0 /\ X_3 - X_4 >= 0 /\ X_1 - X_2 >= 0 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 This yielded the following problem: 2.40/1.42 2.40/1.42 5: T: 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_4 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_4 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 - ar_4 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 ] 2.40/1.42 2.40/1.42 start location: koat_start 2.40/1.42 2.40/1.42 leaf cost: 0 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 A polynomial rank function with 2.40/1.42 2.40/1.42 Pol(koat_start) = -V_2 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoostart) = -V_2 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoobb0in) = -V_2 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoobb1in) = -V_1 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoobb2in) = -V_1 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoobb3in) = -V_1 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoostop) = -V_1 + V_5 2.40/1.42 2.40/1.42 orients all transitions weakly and the transition 2.40/1.42 2.40/1.42 evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 strictly and produces the following problem: 2.40/1.42 2.40/1.42 6: T: 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_4 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_4 ] 2.40/1.42 2.40/1.42 (Comp: ar_1 + ar_4, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 - ar_4 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 ] 2.40/1.42 2.40/1.42 start location: koat_start 2.40/1.42 2.40/1.42 leaf cost: 0 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 A polynomial rank function with 2.40/1.42 2.40/1.42 Pol(koat_start) = -V_4 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoostart) = -V_4 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoobb0in) = -V_4 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoobb1in) = -V_3 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoobb2in) = -V_3 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoobb3in) = -V_3 + V_5 2.40/1.42 2.40/1.42 Pol(evalfoostop) = -V_3 + V_5 2.40/1.42 2.40/1.42 orients all transitions weakly and the transition 2.40/1.42 2.40/1.42 evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 strictly and produces the following problem: 2.40/1.42 2.40/1.42 7: T: 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_4 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_4 ] 2.40/1.42 2.40/1.42 (Comp: ar_1 + ar_4, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: ar_3 + ar_4, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 - ar_4 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 ] 2.40/1.42 2.40/1.42 start location: koat_start 2.40/1.42 2.40/1.42 leaf cost: 0 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 Repeatedly propagating knowledge in problem 7 produces the following problem: 2.40/1.42 2.40/1.42 8: T: 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.40/1.42 2.40/1.42 (Comp: ar_3 + 2*ar_4 + ar_1 + 1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_4 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_4 ] 2.40/1.42 2.40/1.42 (Comp: ar_1 + ar_4, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.40/1.42 2.40/1.42 (Comp: ar_3 + ar_4, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_2 ] 2.40/1.42 2.40/1.42 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 - ar_4 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 ] 2.40/1.42 2.40/1.42 start location: koat_start 2.40/1.42 2.40/1.42 leaf cost: 0 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 Complexity upper bound 2*ar_3 + 4*ar_4 + 2*ar_1 + 7 2.40/1.42 2.40/1.42 2.40/1.42 2.40/1.42 Time: 0.231 sec (SMT: 0.195 sec) 2.40/1.42 2.40/1.42 2.40/1.42 ---------------------------------------- 2.40/1.42 2.40/1.42 (2) 2.40/1.42 BOUNDS(1, n^1) 2.40/1.44 EOF