2.20/1.25 WORST_CASE(?, O(n^1)) 2.20/1.26 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.20/1.26 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.20/1.26 2.20/1.26 2.20/1.26 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.20/1.26 2.20/1.26 (0) CpxIntTrs 2.20/1.26 (1) Koat Proof [FINISHED, 35 ms] 2.20/1.26 (2) BOUNDS(1, n^1) 2.20/1.26 2.20/1.26 2.20/1.26 ---------------------------------------- 2.20/1.26 2.20/1.26 (0) 2.20/1.26 Obligation: 2.20/1.26 Complexity Int TRS consisting of the following rules: 2.20/1.26 eval_foo_start(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb0_in(v_.0, v_.01, v_x, v_y)) :|: TRUE 2.20/1.26 eval_foo_bb0_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_x, v_y, v_x, v_y)) :|: TRUE 2.20/1.26 eval_foo_bb1_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb2_in(v_.0, v_.01, v_x, v_y)) :|: v_.0 > 0 && v_.01 > 0 2.20/1.26 eval_foo_bb1_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_x, v_y)) :|: v_.0 <= 0 2.20/1.26 eval_foo_bb1_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_x, v_y)) :|: v_.01 <= 0 2.20/1.26 eval_foo_bb2_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0 - 1, v_.01 - 1, v_x, v_y)) :|: TRUE 2.20/1.26 eval_foo_bb3_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_stop(v_.0, v_.01, v_x, v_y)) :|: TRUE 2.20/1.26 2.20/1.26 The start-symbols are:[eval_foo_start_4] 2.20/1.26 2.20/1.26 2.20/1.26 ---------------------------------------- 2.20/1.26 2.20/1.26 (1) Koat Proof (FINISHED) 2.20/1.26 YES(?, 2*ar_3 + 10) 2.20/1.26 2.20/1.26 2.20/1.26 2.20/1.26 Initial complexity problem: 2.20/1.26 2.20/1.26 1: T: 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 1 /\ ar_2 >= 1 ] 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 ] 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 ] 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2 - 1, ar_3)) 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.20/1.26 2.20/1.26 start location: koat_start 2.20/1.26 2.20/1.26 leaf cost: 0 2.20/1.26 2.20/1.26 2.20/1.26 2.20/1.26 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.20/1.26 2.20/1.26 2: T: 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 1 /\ ar_2 >= 1 ] 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 ] 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 ] 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2 - 1, ar_3)) 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.20/1.26 2.20/1.26 start location: koat_start 2.20/1.26 2.20/1.26 leaf cost: 0 2.20/1.26 2.20/1.26 2.20/1.26 2.20/1.26 A polynomial rank function with 2.20/1.26 2.20/1.26 Pol(evalfoostart) = 2 2.20/1.26 2.20/1.26 Pol(evalfoobb0in) = 2 2.20/1.26 2.20/1.26 Pol(evalfoobb1in) = 2 2.20/1.26 2.20/1.26 Pol(evalfoobb2in) = 2 2.20/1.26 2.20/1.26 Pol(evalfoobb3in) = 1 2.20/1.26 2.20/1.26 Pol(evalfoostop) = 0 2.20/1.26 2.20/1.26 Pol(koat_start) = 2 2.20/1.26 2.20/1.26 orients all transitions weakly and the transitions 2.20/1.26 2.20/1.26 evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 ] 2.20/1.26 2.20/1.26 evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 ] 2.20/1.26 2.20/1.26 strictly and produces the following problem: 2.20/1.26 2.20/1.26 3: T: 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 1 /\ ar_2 >= 1 ] 2.20/1.26 2.20/1.26 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 ] 2.20/1.26 2.20/1.26 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 ] 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2 - 1, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.20/1.26 2.20/1.26 start location: koat_start 2.20/1.26 2.20/1.26 leaf cost: 0 2.20/1.26 2.20/1.26 2.20/1.26 2.20/1.26 A polynomial rank function with 2.20/1.26 2.20/1.26 Pol(evalfoostart) = V_4 + 1 2.20/1.26 2.20/1.26 Pol(evalfoobb0in) = V_4 + 1 2.20/1.26 2.20/1.26 Pol(evalfoobb1in) = V_3 + 1 2.20/1.26 2.20/1.26 Pol(evalfoobb2in) = V_3 2.20/1.26 2.20/1.26 Pol(evalfoobb3in) = V_3 2.20/1.26 2.20/1.26 Pol(evalfoostop) = V_3 2.20/1.26 2.20/1.26 Pol(koat_start) = V_4 + 1 2.20/1.26 2.20/1.26 orients all transitions weakly and the transition 2.20/1.26 2.20/1.26 evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 1 /\ ar_2 >= 1 ] 2.20/1.26 2.20/1.26 strictly and produces the following problem: 2.20/1.26 2.20/1.26 4: T: 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.20/1.26 2.20/1.26 (Comp: ar_3 + 1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 1 /\ ar_2 >= 1 ] 2.20/1.26 2.20/1.26 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 ] 2.20/1.26 2.20/1.26 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 ] 2.20/1.26 2.20/1.26 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2 - 1, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.20/1.26 2.20/1.26 start location: koat_start 2.20/1.26 2.20/1.26 leaf cost: 0 2.20/1.26 2.20/1.26 2.20/1.26 2.20/1.26 Repeatedly propagating knowledge in problem 4 produces the following problem: 2.20/1.26 2.20/1.26 5: T: 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.20/1.26 2.20/1.26 (Comp: ar_3 + 1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 1 /\ ar_2 >= 1 ] 2.20/1.26 2.20/1.26 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 ] 2.20/1.26 2.20/1.26 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 ] 2.20/1.26 2.20/1.26 (Comp: ar_3 + 1, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2 - 1, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.20/1.26 2.20/1.26 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.20/1.26 2.20/1.26 start location: koat_start 2.20/1.26 2.20/1.26 leaf cost: 0 2.20/1.26 2.20/1.26 2.20/1.26 2.20/1.26 Complexity upper bound 2*ar_3 + 10 2.20/1.26 2.20/1.26 2.20/1.26 2.20/1.26 Time: 0.071 sec (SMT: 0.063 sec) 2.20/1.26 2.20/1.26 2.20/1.26 ---------------------------------------- 2.20/1.26 2.20/1.26 (2) 2.20/1.26 BOUNDS(1, n^1) 2.20/1.28 EOF