2.37/1.51 WORST_CASE(?, O(n^1)) 2.37/1.52 proof of /export/starexec/sandbox2/output/output_files/bench.koat 2.37/1.52 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.37/1.52 2.37/1.52 2.37/1.52 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.37/1.52 2.37/1.52 (0) CpxIntTrs 2.37/1.52 (1) Koat Proof [FINISHED, 279 ms] 2.37/1.52 (2) BOUNDS(1, n^1) 2.37/1.52 2.37/1.52 2.37/1.52 ---------------------------------------- 2.37/1.52 2.37/1.52 (0) 2.37/1.52 Obligation: 2.37/1.52 Complexity Int TRS consisting of the following rules: 2.37/1.52 eval_foo_start(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb0_in(v_.0, v_.01, v_x, v_y, v_z)) :|: TRUE 2.37/1.52 eval_foo_bb0_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_x, v_z, v_x, v_y, v_z)) :|: TRUE 2.37/1.52 eval_foo_bb1_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb2_in(v_.0, v_.01, v_x, v_y, v_z)) :|: v_.0 < v_y 2.37/1.52 eval_foo_bb1_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_x, v_y, v_z)) :|: v_.0 >= v_y 2.37/1.52 eval_foo_bb2_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_.0 + 1, v_.01, v_x, v_y, v_z)) :|: v_.0 < v_.01 2.37/1.52 eval_foo_bb2_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_.0, v_.01, v_x, v_y, v_z)) :|: v_.0 < v_.01 && v_.0 >= v_.01 2.37/1.53 eval_foo_bb2_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_.0 + 1, v_.01 + 1, v_x, v_y, v_z)) :|: v_.0 >= v_.01 && v_.0 < v_.01 2.37/1.53 eval_foo_bb2_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_.0, v_.01 + 1, v_x, v_y, v_z)) :|: v_.0 >= v_.01 2.37/1.53 eval_foo_bb3_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_stop(v_.0, v_.01, v_x, v_y, v_z)) :|: TRUE 2.37/1.53 2.37/1.53 The start-symbols are:[eval_foo_start_5] 2.37/1.53 2.37/1.53 2.37/1.53 ---------------------------------------- 2.37/1.53 2.37/1.53 (1) Koat Proof (FINISHED) 2.37/1.53 YES(?, 2*ar_3 + 4*ar_4 + 2*ar_1 + 7) 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 Initial complexity problem: 2.37/1.53 2.37/1.53 1: T: 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 >= ar_4 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 /\ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 /\ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.37/1.53 2.37/1.53 start location: koat_start 2.37/1.53 2.37/1.53 leaf cost: 0 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 Testing for reachability in the complexity graph removes the following transitions from problem 1: 2.37/1.53 2.37/1.53 evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 /\ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 /\ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 We thus obtain the following problem: 2.37/1.53 2.37/1.53 2: T: 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 >= ar_4 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.37/1.53 2.37/1.53 start location: koat_start 2.37/1.53 2.37/1.53 leaf cost: 0 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 Repeatedly propagating knowledge in problem 2 produces the following problem: 2.37/1.53 2.37/1.53 3: T: 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 >= ar_4 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.37/1.53 2.37/1.53 start location: koat_start 2.37/1.53 2.37/1.53 leaf cost: 0 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 A polynomial rank function with 2.37/1.53 2.37/1.53 Pol(evalfoobb3in) = 1 2.37/1.53 2.37/1.53 Pol(evalfoostop) = 0 2.37/1.53 2.37/1.53 Pol(evalfoobb2in) = 2 2.37/1.53 2.37/1.53 Pol(evalfoobb1in) = 2 2.37/1.53 2.37/1.53 Pol(evalfoobb0in) = 2 2.37/1.53 2.37/1.53 Pol(evalfoostart) = 2 2.37/1.53 2.37/1.53 Pol(koat_start) = 2 2.37/1.53 2.37/1.53 orients all transitions weakly and the transitions 2.37/1.53 2.37/1.53 evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 >= ar_4 ] 2.37/1.53 2.37/1.53 strictly and produces the following problem: 2.37/1.53 2.37/1.53 4: T: 2.37/1.53 2.37/1.53 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 >= ar_4 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.37/1.53 2.37/1.53 start location: koat_start 2.37/1.53 2.37/1.53 leaf cost: 0 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 Applied AI with 'oct' on problem 4 to obtain the following invariants: 2.37/1.53 2.37/1.53 For symbol evalfoobb1in: X_3 - X_4 >= 0 /\ X_1 - X_2 >= 0 2.37/1.53 2.37/1.53 For symbol evalfoobb2in: -X_2 + X_5 - 1 >= 0 /\ -X_1 + X_5 - 1 >= 0 /\ X_3 - X_4 >= 0 /\ X_1 - X_2 >= 0 2.37/1.53 2.37/1.53 For symbol evalfoobb3in: X_1 - X_5 >= 0 /\ X_3 - X_4 >= 0 /\ X_1 - X_2 >= 0 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 This yielded the following problem: 2.37/1.53 2.37/1.53 5: T: 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_4 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_4 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 - ar_4 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 ] 2.37/1.53 2.37/1.53 start location: koat_start 2.37/1.53 2.37/1.53 leaf cost: 0 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 A polynomial rank function with 2.37/1.53 2.37/1.53 Pol(koat_start) = -V_2 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoostart) = -V_2 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoobb0in) = -V_2 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoobb1in) = -V_1 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoobb2in) = -V_1 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoobb3in) = -V_1 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoostop) = -V_1 + V_5 2.37/1.53 2.37/1.53 orients all transitions weakly and the transition 2.37/1.53 2.37/1.53 evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 strictly and produces the following problem: 2.37/1.53 2.37/1.53 6: T: 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_4 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_4 ] 2.37/1.53 2.37/1.53 (Comp: ar_1 + ar_4, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 - ar_4 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 ] 2.37/1.53 2.37/1.53 start location: koat_start 2.37/1.53 2.37/1.53 leaf cost: 0 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 A polynomial rank function with 2.37/1.53 2.37/1.53 Pol(koat_start) = -V_4 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoostart) = -V_4 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoobb0in) = -V_4 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoobb1in) = -V_3 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoobb2in) = -V_3 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoobb3in) = -V_3 + V_5 2.37/1.53 2.37/1.53 Pol(evalfoostop) = -V_3 + V_5 2.37/1.53 2.37/1.53 orients all transitions weakly and the transition 2.37/1.53 2.37/1.53 evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 strictly and produces the following problem: 2.37/1.53 2.37/1.53 7: T: 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_4 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_4 ] 2.37/1.53 2.37/1.53 (Comp: ar_1 + ar_4, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: ar_3 + ar_4, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 - ar_4 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 ] 2.37/1.53 2.37/1.53 start location: koat_start 2.37/1.53 2.37/1.53 leaf cost: 0 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 Repeatedly propagating knowledge in problem 7 produces the following problem: 2.37/1.53 2.37/1.53 8: T: 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.37/1.53 2.37/1.53 (Comp: ar_3 + 2*ar_4 + ar_1 + 1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_4 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_4 ] 2.37/1.53 2.37/1.53 (Comp: ar_1 + ar_4, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_2 >= ar_0 + 1 ] 2.37/1.53 2.37/1.53 (Comp: ar_3 + ar_4, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 + 1, ar_3, ar_4)) [ -ar_1 + ar_4 - 1 >= 0 /\ -ar_0 + ar_4 - 1 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_0 >= ar_2 ] 2.37/1.53 2.37/1.53 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 - ar_4 >= 0 /\ ar_2 - ar_3 >= 0 /\ ar_0 - ar_1 >= 0 ] 2.37/1.53 2.37/1.53 start location: koat_start 2.37/1.53 2.37/1.53 leaf cost: 0 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 Complexity upper bound 2*ar_3 + 4*ar_4 + 2*ar_1 + 7 2.37/1.53 2.37/1.53 2.37/1.53 2.37/1.53 Time: 0.226 sec (SMT: 0.191 sec) 2.37/1.53 2.37/1.53 2.37/1.53 ---------------------------------------- 2.37/1.53 2.37/1.53 (2) 2.37/1.53 BOUNDS(1, n^1) 2.40/1.55 EOF