2.49/1.54 WORST_CASE(?, O(n^1)) 2.49/1.55 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.49/1.55 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.49/1.55 2.49/1.55 2.49/1.55 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.49/1.55 2.49/1.55 (0) CpxIntTrs 2.49/1.55 (1) Koat Proof [FINISHED, 277 ms] 2.49/1.55 (2) BOUNDS(1, n^1) 2.49/1.55 2.49/1.55 2.49/1.55 ---------------------------------------- 2.49/1.55 2.49/1.55 (0) 2.49/1.55 Obligation: 2.49/1.55 Complexity Int TRS consisting of the following rules: 2.49/1.55 eval_foo_start(v_.0, v_M, v_x) -> Com_1(eval_foo_bb0_in(v_.0, v_M, v_x)) :|: TRUE 2.49/1.55 eval_foo_bb0_in(v_.0, v_M, v_x) -> Com_1(eval_foo_bb1_in(v_x, v_M, v_x)) :|: v_M > 0 2.49/1.55 eval_foo_bb0_in(v_.0, v_M, v_x) -> Com_1(eval_foo_bb3_in(v_.0, v_M, v_x)) :|: v_M <= 0 2.49/1.55 eval_foo_bb1_in(v_.0, v_M, v_x) -> Com_1(eval_foo_bb2_in(v_.0, v_M, v_x)) :|: v_.0 < v_M 2.49/1.55 eval_foo_bb1_in(v_.0, v_M, v_x) -> Com_1(eval_foo_bb2_in(v_.0, v_M, v_x)) :|: v_.0 > v_M 2.49/1.55 eval_foo_bb1_in(v_.0, v_M, v_x) -> Com_1(eval_foo_bb3_in(v_.0, v_M, v_x)) :|: v_.0 >= v_M && v_.0 <= v_M 2.49/1.55 eval_foo_bb2_in(v_.0, v_M, v_x) -> Com_1(eval_foo_bb1_in(0, v_M, v_x)) :|: v_.0 > v_M 2.49/1.55 eval_foo_bb2_in(v_.0, v_M, v_x) -> Com_1(eval_foo_bb1_in(v_.0 + 1, v_M, v_x)) :|: v_.0 <= v_M 2.49/1.55 eval_foo_bb3_in(v_.0, v_M, v_x) -> Com_1(eval_foo_stop(v_.0, v_M, v_x)) :|: TRUE 2.49/1.55 2.49/1.55 The start-symbols are:[eval_foo_start_3] 2.49/1.55 2.49/1.55 2.49/1.55 ---------------------------------------- 2.49/1.55 2.49/1.55 (1) Koat Proof (FINISHED) 2.49/1.55 YES(?, 4*ar_0 + 2*ar_2 + 17) 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 Initial complexity problem: 2.49/1.55 2.49/1.55 1: T: 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 0, ar_2)) [ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.49/1.55 2.49/1.55 2: T: 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 0, ar_2)) [ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 A polynomial rank function with 2.49/1.55 2.49/1.55 Pol(evalfoostart) = 2 2.49/1.55 2.49/1.55 Pol(evalfoobb0in) = 2 2.49/1.55 2.49/1.55 Pol(evalfoobb1in) = 2 2.49/1.55 2.49/1.55 Pol(evalfoobb3in) = 1 2.49/1.55 2.49/1.55 Pol(evalfoobb2in) = 2 2.49/1.55 2.49/1.55 Pol(evalfoostop) = 0 2.49/1.55 2.49/1.55 Pol(koat_start) = 2 2.49/1.55 2.49/1.55 orients all transitions weakly and the transitions 2.49/1.55 2.49/1.55 evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 strictly and produces the following problem: 2.49/1.55 2.49/1.55 3: T: 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_1 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 0, ar_2)) [ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 Applied AI with 'oct' on problem 3 to obtain the following invariants: 2.49/1.55 2.49/1.55 For symbol evalfoobb1in: X_1 - 1 >= 0 2.49/1.55 2.49/1.55 For symbol evalfoobb2in: X_1 - 1 >= 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 This yielded the following problem: 2.49/1.55 2.49/1.55 4: T: 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 0, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 By chaining the transition koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] with all transitions in problem 4, the following new transition is obtained: 2.49/1.55 2.49/1.55 koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 We thus obtain the following problem: 2.49/1.55 2.49/1.55 5: T: 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 0, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 Testing for reachability in the complexity graph removes the following transition from problem 5: 2.49/1.55 2.49/1.55 evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 We thus obtain the following problem: 2.49/1.55 2.49/1.55 6: T: 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 0, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 By chaining the transition evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 0, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] with all transitions in problem 6, the following new transition is obtained: 2.49/1.55 2.49/1.55 evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, 0, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 /\ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 We thus obtain the following problem: 2.49/1.55 2.49/1.55 7: T: 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 2) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, 0, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 /\ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 By chaining the transition evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, 0, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 /\ ar_0 >= 1 ] with all transitions in problem 7, the following new transition is obtained: 2.49/1.55 2.49/1.55 evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 /\ ar_0 >= 1 /\ ar_0 >= 0 ] 2.49/1.55 2.49/1.55 We thus obtain the following problem: 2.49/1.55 2.49/1.55 8: T: 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 3) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 /\ ar_0 >= 1 /\ ar_0 >= 0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 By chaining the transition evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 ] with all transitions in problem 8, the following new transition is obtained: 2.49/1.55 2.49/1.55 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 We thus obtain the following problem: 2.49/1.55 2.49/1.55 9: T: 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 3) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 /\ ar_0 >= 1 /\ ar_0 >= 0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 Testing for reachability in the complexity graph removes the following transition from problem 9: 2.49/1.55 2.49/1.55 evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 We thus obtain the following problem: 2.49/1.55 2.49/1.55 10: T: 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 3) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 /\ ar_0 >= 1 /\ ar_0 >= 0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 Repeatedly propagating knowledge in problem 10 produces the following problem: 2.49/1.55 2.49/1.55 11: T: 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 3) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 /\ ar_0 >= 1 /\ ar_0 >= 0 ] 2.49/1.55 2.49/1.55 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 A polynomial rank function with 2.49/1.55 2.49/1.55 Pol(evalfoobb1in) = V_1 - V_2 + 1 2.49/1.55 2.49/1.55 and size complexities 2.49/1.55 2.49/1.55 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 2.49/1.55 2.49/1.55 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 2.49/1.55 2.49/1.55 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 2.49/1.55 2.49/1.55 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ]", 0-0) = ar_0 2.49/1.55 2.49/1.55 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ]", 0-1) = ar_1 2.49/1.55 2.49/1.55 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ]", 0-2) = ar_2 2.49/1.55 2.49/1.55 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ]", 0-0) = ar_0 2.49/1.55 2.49/1.55 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ]", 0-1) = ar_2 2.49/1.55 2.49/1.55 S("evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ]", 0-2) = ar_2 2.49/1.55 2.49/1.55 S("evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2))", 0-0) = ar_0 2.49/1.55 2.49/1.55 S("evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2))", 0-1) = ? 2.49/1.55 2.49/1.55 S("evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2))", 0-2) = ar_2 2.49/1.55 2.49/1.55 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_1 = ar_0 ]", 0-0) = ar_0 2.49/1.55 2.49/1.55 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_1 = ar_0 ]", 0-1) = ? 2.49/1.55 2.49/1.55 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_1 = ar_0 ]", 0-2) = ar_2 2.49/1.55 2.49/1.55 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_1 >= ar_0 + 1 ]", 0-0) = ar_0 2.49/1.55 2.49/1.55 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_1 >= ar_0 + 1 ]", 0-1) = ar_2 2.49/1.55 2.49/1.55 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_1 >= ar_0 + 1 ]", 0-2) = ar_2 2.49/1.55 2.49/1.55 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_0 >= ar_1 + 1 /\\ ar_0 >= ar_1 ]", 0-0) = ar_0 2.49/1.55 2.49/1.55 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_0 >= ar_1 + 1 /\\ ar_0 >= ar_1 ]", 0-1) = ? 2.49/1.55 2.49/1.55 S("evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_0 >= ar_1 + 1 /\\ ar_0 >= ar_1 ]", 0-2) = ar_2 2.49/1.55 2.49/1.55 S("evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_1 >= ar_0 + 1 /\\ ar_0 >= 1 /\\ ar_0 >= 0 ]", 0-0) = ar_0 2.49/1.55 2.49/1.55 S("evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_1 >= ar_0 + 1 /\\ ar_0 >= 1 /\\ ar_0 >= 0 ]", 0-1) = 1 2.49/1.55 2.49/1.55 S("evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 1, ar_2)) [ ar_0 - 1 >= 0 /\\ ar_1 >= ar_0 + 1 /\\ ar_0 >= 1 /\\ ar_0 >= 0 ]", 0-2) = ar_2 2.49/1.55 2.49/1.55 orients the transitions 2.49/1.55 2.49/1.55 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 weakly and the transition 2.49/1.55 2.49/1.55 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 strictly and produces the following problem: 2.49/1.55 2.49/1.55 12: T: 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 3) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 /\ ar_0 >= 1 /\ ar_0 >= 0 ] 2.49/1.55 2.49/1.55 (Comp: 2*ar_0 + ar_2 + 3, Cost: 2) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_1 + 1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_0 >= ar_1 + 1 /\ ar_0 >= ar_1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 - 1 >= 0 /\ ar_1 = ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0, ar_2, ar_2)) [ ar_0 >= 1 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_0 ] 2.49/1.55 2.49/1.55 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.49/1.55 2.49/1.55 start location: koat_start 2.49/1.55 2.49/1.55 leaf cost: 0 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 Complexity upper bound 4*ar_0 + 2*ar_2 + 17 2.49/1.55 2.49/1.55 2.49/1.55 2.49/1.55 Time: 0.298 sec (SMT: 0.254 sec) 2.49/1.55 2.49/1.55 2.49/1.55 ---------------------------------------- 2.49/1.55 2.49/1.55 (2) 2.49/1.55 BOUNDS(1, n^1) 2.51/1.57 EOF