2.19/1.31 WORST_CASE(?, O(n^1)) 2.19/1.32 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.19/1.32 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.19/1.32 2.19/1.32 2.19/1.32 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.19/1.32 2.19/1.32 (0) CpxIntTrs 2.19/1.32 (1) Koat Proof [FINISHED, 72 ms] 2.19/1.32 (2) BOUNDS(1, n^1) 2.19/1.32 2.19/1.32 2.19/1.32 ---------------------------------------- 2.19/1.32 2.19/1.32 (0) 2.19/1.32 Obligation: 2.19/1.32 Complexity Int TRS consisting of the following rules: 2.19/1.32 eval_foo_start(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb0_in(v_.01, v_.02, v_c, v_x, v_y, v_z)) :|: TRUE 2.19/1.32 eval_foo_bb0_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_y, v_z, v_c, v_x, v_y, v_z)) :|: TRUE 2.19/1.32 eval_foo_bb1_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb2_in(v_.01, v_.02, v_c, v_x, v_y, v_z)) :|: v_x > v_.01 + v_.02 2.19/1.32 eval_foo_bb1_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb3_in(v_.01, v_.02, v_c, v_x, v_y, v_z)) :|: v_x <= v_.01 + v_.02 2.19/1.32 eval_foo_bb2_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_.01 + 1, v_.02 + 1, v_c, v_x, v_y, v_z)) :|: TRUE 2.19/1.32 eval_foo_bb3_in(v_.01, v_.02, v_c, v_x, v_y, v_z) -> Com_1(eval_foo_stop(v_.01, v_.02, v_c, v_x, v_y, v_z)) :|: TRUE 2.19/1.32 2.19/1.32 The start-symbols are:[eval_foo_start_6] 2.19/1.32 2.19/1.32 2.19/1.32 ---------------------------------------- 2.19/1.32 2.19/1.32 (1) Koat Proof (FINISHED) 2.19/1.32 YES(?, 2*ar_1 + 2*ar_3 + 2*ar_4 + 10) 2.19/1.32 2.19/1.32 2.19/1.32 2.19/1.32 Initial complexity problem: 2.19/1.32 2.19/1.32 1: T: 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + ar_2 + 1 ] 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 + ar_2 >= ar_4 ] 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2 + 1, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.19/1.32 2.19/1.32 start location: koat_start 2.19/1.32 2.19/1.32 leaf cost: 0 2.19/1.32 2.19/1.32 2.19/1.32 2.19/1.32 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.19/1.32 2.19/1.32 2: T: 2.19/1.32 2.19/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + ar_2 + 1 ] 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 + ar_2 >= ar_4 ] 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2 + 1, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.19/1.32 2.19/1.32 start location: koat_start 2.19/1.32 2.19/1.32 leaf cost: 0 2.19/1.32 2.19/1.32 2.19/1.32 2.19/1.32 A polynomial rank function with 2.19/1.32 2.19/1.32 Pol(evalfoostart) = 2 2.19/1.32 2.19/1.32 Pol(evalfoobb0in) = 2 2.19/1.32 2.19/1.32 Pol(evalfoobb1in) = 2 2.19/1.32 2.19/1.32 Pol(evalfoobb2in) = 2 2.19/1.32 2.19/1.32 Pol(evalfoobb3in) = 1 2.19/1.32 2.19/1.32 Pol(evalfoostop) = 0 2.19/1.32 2.19/1.32 Pol(koat_start) = 2 2.19/1.32 2.19/1.32 orients all transitions weakly and the transitions 2.19/1.32 2.19/1.32 evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.19/1.32 2.19/1.32 evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 + ar_2 >= ar_4 ] 2.19/1.32 2.19/1.32 strictly and produces the following problem: 2.19/1.32 2.19/1.32 3: T: 2.19/1.32 2.19/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + ar_2 + 1 ] 2.19/1.32 2.19/1.32 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 + ar_2 >= ar_4 ] 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2 + 1, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.19/1.32 2.19/1.32 start location: koat_start 2.19/1.32 2.19/1.32 leaf cost: 0 2.19/1.32 2.19/1.32 2.19/1.32 2.19/1.32 A polynomial rank function with 2.19/1.32 2.19/1.32 Pol(evalfoostart) = -V_2 - V_4 + V_5 + 2 2.19/1.32 2.19/1.32 Pol(evalfoobb0in) = -V_2 - V_4 + V_5 + 2 2.19/1.32 2.19/1.32 Pol(evalfoobb1in) = -V_1 - V_3 + V_5 + 2 2.19/1.32 2.19/1.32 Pol(evalfoobb2in) = -V_1 - V_3 + V_5 2.19/1.32 2.19/1.32 Pol(evalfoobb3in) = -V_1 - V_3 + V_5 2.19/1.32 2.19/1.32 Pol(evalfoostop) = -V_1 - V_3 + V_5 2.19/1.32 2.19/1.32 Pol(koat_start) = -V_2 - V_4 + V_5 + 2 2.19/1.32 2.19/1.32 orients all transitions weakly and the transition 2.19/1.32 2.19/1.32 evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + ar_2 + 1 ] 2.19/1.32 2.19/1.32 strictly and produces the following problem: 2.19/1.32 2.19/1.32 4: T: 2.19/1.32 2.19/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.19/1.32 2.19/1.32 (Comp: ar_1 + ar_3 + ar_4 + 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + ar_2 + 1 ] 2.19/1.32 2.19/1.32 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 + ar_2 >= ar_4 ] 2.19/1.32 2.19/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2 + 1, ar_3, ar_4)) 2.30/1.32 2.30/1.32 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.30/1.32 2.30/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.30/1.32 2.30/1.32 start location: koat_start 2.30/1.32 2.30/1.32 leaf cost: 0 2.30/1.32 2.30/1.32 2.30/1.32 2.30/1.32 Repeatedly propagating knowledge in problem 4 produces the following problem: 2.30/1.32 2.30/1.32 5: T: 2.30/1.32 2.30/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.30/1.32 2.30/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_4)) 2.30/1.32 2.30/1.32 (Comp: ar_1 + ar_3 + ar_4 + 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_0 + ar_2 + 1 ] 2.30/1.32 2.30/1.32 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_0 + ar_2 >= ar_4 ] 2.30/1.32 2.30/1.32 (Comp: ar_1 + ar_3 + ar_4 + 2, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2 + 1, ar_3, ar_4)) 2.30/1.32 2.30/1.32 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.30/1.32 2.30/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.30/1.32 2.30/1.32 start location: koat_start 2.30/1.32 2.30/1.32 leaf cost: 0 2.30/1.32 2.30/1.32 2.30/1.32 2.30/1.32 Complexity upper bound 2*ar_1 + 2*ar_3 + 2*ar_4 + 10 2.30/1.32 2.30/1.32 2.30/1.32 2.30/1.32 Time: 0.071 sec (SMT: 0.065 sec) 2.30/1.32 2.30/1.32 2.30/1.32 ---------------------------------------- 2.30/1.32 2.30/1.32 (2) 2.30/1.32 BOUNDS(1, n^1) 2.30/1.33 EOF