2.15/1.38 WORST_CASE(?, O(n^1)) 2.15/1.39 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.15/1.39 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.15/1.39 2.15/1.39 2.15/1.39 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.15/1.39 2.15/1.39 (0) CpxIntTrs 2.15/1.39 (1) Koat Proof [FINISHED, 77 ms] 2.15/1.39 (2) BOUNDS(1, n^1) 2.15/1.39 2.15/1.39 2.15/1.39 ---------------------------------------- 2.15/1.39 2.15/1.39 (0) 2.15/1.39 Obligation: 2.15/1.39 Complexity Int TRS consisting of the following rules: 2.15/1.39 eval_foo_start(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp) -> Com_1(eval_foo_bb0_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp)) :|: TRUE 2.15/1.39 eval_foo_bb0_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp) -> Com_1(eval_foo_bb1_in(v_x, v_.01, v_res, v_restmp, v_x, v_xtmp)) :|: TRUE 2.15/1.39 eval_foo_bb1_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp) -> Com_1(eval_foo_bb2_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp)) :|: v_.0 > 1 2.15/1.39 eval_foo_bb1_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp) -> Com_1(eval_foo_bb6_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp)) :|: v_.0 <= 1 2.15/1.39 eval_foo_bb2_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp) -> Com_1(eval_foo_bb3_in(v_.0, v_.0 - 2, v_res, v_restmp, v_x, v_xtmp)) :|: TRUE 2.15/1.39 eval_foo_bb3_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp) -> Com_1(eval_foo_bb4_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp)) :|: v_.01 > 1 2.15/1.39 eval_foo_bb3_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp) -> Com_1(eval_foo_bb5_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp)) :|: v_.01 <= 1 2.15/1.39 eval_foo_bb4_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp) -> Com_1(eval_foo_bb3_in(v_.0, v_.01 - 2, v_res, v_restmp, v_x, v_xtmp)) :|: TRUE 2.15/1.39 eval_foo_bb5_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp) -> Com_1(eval_foo_bb1_in(v_.01 + 1, v_.01, v_res, v_restmp, v_x, v_xtmp)) :|: TRUE 2.15/1.39 eval_foo_bb6_in(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp) -> Com_1(eval_foo_stop(v_.0, v_.01, v_res, v_restmp, v_x, v_xtmp)) :|: TRUE 2.15/1.39 2.15/1.39 The start-symbols are:[eval_foo_start_6] 2.15/1.39 2.15/1.39 2.15/1.39 ---------------------------------------- 2.15/1.39 2.15/1.39 (1) Koat Proof (FINISHED) 2.15/1.39 YES(?, 8*ar_1 + 6) 2.15/1.39 2.15/1.39 2.15/1.39 2.15/1.39 Initial complexity problem: 2.15/1.39 2.15/1.39 1: T: 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= 2 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb6in(ar_0, ar_1, ar_2)) [ 1 >= ar_0 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_0 - 2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2 - 2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_2 + 1, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb6in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.39 2.15/1.39 start location: koat_start 2.15/1.39 2.15/1.39 leaf cost: 0 2.15/1.39 2.15/1.39 2.15/1.39 2.15/1.39 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.15/1.39 2.15/1.39 2: T: 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= 2 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb6in(ar_0, ar_1, ar_2)) [ 1 >= ar_0 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_0 - 2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2 - 2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_2 + 1, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb6in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.39 2.15/1.39 start location: koat_start 2.15/1.39 2.15/1.39 leaf cost: 0 2.15/1.39 2.15/1.39 2.15/1.39 2.15/1.39 A polynomial rank function with 2.15/1.39 2.15/1.39 Pol(evalfoostart) = 2 2.15/1.39 2.15/1.39 Pol(evalfoobb0in) = 2 2.15/1.39 2.15/1.39 Pol(evalfoobb1in) = 2 2.15/1.39 2.15/1.39 Pol(evalfoobb2in) = 2 2.15/1.39 2.15/1.39 Pol(evalfoobb6in) = 1 2.15/1.39 2.15/1.39 Pol(evalfoobb3in) = 2 2.15/1.39 2.15/1.39 Pol(evalfoobb4in) = 2 2.15/1.39 2.15/1.39 Pol(evalfoobb5in) = 2 2.15/1.39 2.15/1.39 Pol(evalfoostop) = 0 2.15/1.39 2.15/1.39 Pol(koat_start) = 2 2.15/1.39 2.15/1.39 orients all transitions weakly and the transitions 2.15/1.39 2.15/1.39 evalfoobb6in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb6in(ar_0, ar_1, ar_2)) [ 1 >= ar_0 ] 2.15/1.39 2.15/1.39 strictly and produces the following problem: 2.15/1.39 2.15/1.39 3: T: 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= 2 ] 2.15/1.39 2.15/1.39 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb6in(ar_0, ar_1, ar_2)) [ 1 >= ar_0 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_0 - 2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2 - 2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_2 + 1, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 2, Cost: 1) evalfoobb6in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.39 2.15/1.39 start location: koat_start 2.15/1.39 2.15/1.39 leaf cost: 0 2.15/1.39 2.15/1.39 2.15/1.39 2.15/1.39 A polynomial rank function with 2.15/1.39 2.15/1.39 Pol(evalfoostart) = V_2 2.15/1.39 2.15/1.39 Pol(evalfoobb0in) = V_2 2.15/1.39 2.15/1.39 Pol(evalfoobb1in) = V_1 - 1 2.15/1.39 2.15/1.39 Pol(evalfoobb2in) = V_1 - 2 2.15/1.39 2.15/1.39 Pol(evalfoobb6in) = V_1 - 1 2.15/1.39 2.15/1.39 Pol(evalfoobb3in) = V_3 2.15/1.39 2.15/1.39 Pol(evalfoobb4in) = V_3 - 1 2.15/1.39 2.15/1.39 Pol(evalfoobb5in) = V_3 2.15/1.39 2.15/1.39 Pol(evalfoostop) = V_1 - 1 2.15/1.39 2.15/1.39 Pol(koat_start) = V_2 2.15/1.39 2.15/1.39 orients all transitions weakly and the transitions 2.15/1.39 2.15/1.39 evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 2.15/1.39 2.15/1.39 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= 2 ] 2.15/1.39 2.15/1.39 strictly and produces the following problem: 2.15/1.39 2.15/1.39 4: T: 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: ar_1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= 2 ] 2.15/1.39 2.15/1.39 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb6in(ar_0, ar_1, ar_2)) [ 1 >= ar_0 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_0 - 2)) 2.15/1.39 2.15/1.39 (Comp: ar_1, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2 - 2)) 2.15/1.39 2.15/1.39 (Comp: ?, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_2 + 1, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 2, Cost: 1) evalfoobb6in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.39 2.15/1.39 start location: koat_start 2.15/1.39 2.15/1.39 leaf cost: 0 2.15/1.39 2.15/1.39 2.15/1.39 2.15/1.39 Repeatedly propagating knowledge in problem 4 produces the following problem: 2.15/1.39 2.15/1.39 5: T: 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: ar_1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_0 >= 2 ] 2.15/1.39 2.15/1.39 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb6in(ar_0, ar_1, ar_2)) [ 1 >= ar_0 ] 2.15/1.39 2.15/1.39 (Comp: ar_1, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_0 - 2)) 2.15/1.39 2.15/1.39 (Comp: ar_1, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 2.15/1.39 2.15/1.39 (Comp: 2*ar_1, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 2.15/1.39 2.15/1.39 (Comp: ar_1, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2 - 2)) 2.15/1.39 2.15/1.39 (Comp: 2*ar_1, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_2 + 1, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 2, Cost: 1) evalfoobb6in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.15/1.39 2.15/1.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.15/1.39 2.15/1.39 start location: koat_start 2.15/1.39 2.15/1.39 leaf cost: 0 2.15/1.39 2.15/1.39 2.15/1.39 2.15/1.39 Complexity upper bound 8*ar_1 + 6 2.15/1.39 2.15/1.39 2.15/1.39 2.15/1.39 Time: 0.083 sec (SMT: 0.076 sec) 2.15/1.39 2.15/1.39 2.15/1.39 ---------------------------------------- 2.15/1.39 2.15/1.39 (2) 2.15/1.39 BOUNDS(1, n^1) 2.15/1.41 EOF