2.08/1.26 WORST_CASE(?, O(n^1)) 2.08/1.27 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.08/1.27 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.08/1.27 2.08/1.27 2.08/1.27 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.08/1.27 2.08/1.27 (0) CpxIntTrs 2.08/1.27 (1) Koat Proof [FINISHED, 74 ms] 2.08/1.27 (2) BOUNDS(1, n^1) 2.08/1.27 2.08/1.27 2.08/1.27 ---------------------------------------- 2.08/1.27 2.08/1.27 (0) 2.08/1.27 Obligation: 2.08/1.27 Complexity Int TRS consisting of the following rules: 2.08/1.27 eval_foo_start(v_.0, v_.01, v_oldx, v_x, v_y) -> Com_1(eval_foo_bb0_in(v_.0, v_.01, v_oldx, v_x, v_y)) :|: TRUE 2.08/1.27 eval_foo_bb0_in(v_.0, v_.01, v_oldx, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_x, v_y, v_oldx, v_x, v_y)) :|: TRUE 2.08/1.27 eval_foo_bb1_in(v_.0, v_.01, v_oldx, v_x, v_y) -> Com_1(eval_foo_bb2_in(v_.0, v_.01, v_oldx, v_x, v_y)) :|: v_.0 >= 0 && v_.01 >= 0 2.08/1.27 eval_foo_bb1_in(v_.0, v_.01, v_oldx, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_oldx, v_x, v_y)) :|: v_.0 < 0 2.08/1.27 eval_foo_bb1_in(v_.0, v_.01, v_oldx, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_oldx, v_x, v_y)) :|: v_.01 < 0 2.08/1.27 eval_foo_bb2_in(v_.0, v_.01, v_oldx, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.01 - 1, v_.0 - 1, v_oldx, v_x, v_y)) :|: TRUE 2.08/1.27 eval_foo_bb3_in(v_.0, v_.01, v_oldx, v_x, v_y) -> Com_1(eval_foo_stop(v_.0, v_.01, v_oldx, v_x, v_y)) :|: TRUE 2.08/1.27 2.08/1.27 The start-symbols are:[eval_foo_start_5] 2.08/1.27 2.08/1.27 2.08/1.27 ---------------------------------------- 2.08/1.27 2.08/1.27 (1) Koat Proof (FINISHED) 2.08/1.27 YES(?, 2*ar_1 + 2*ar_3 + 12) 2.08/1.27 2.08/1.27 2.08/1.27 2.08/1.27 Initial complexity problem: 2.08/1.27 2.08/1.27 1: T: 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_2 >= 0 ] 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + 1 ] 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 ] 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_2 - 1, ar_1, ar_0 - 1, ar_3)) 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.08/1.27 2.08/1.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.08/1.27 2.08/1.27 start location: koat_start 2.08/1.27 2.08/1.27 leaf cost: 0 2.08/1.27 2.08/1.27 2.08/1.27 2.08/1.27 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.08/1.27 2.08/1.27 2: T: 2.08/1.27 2.08/1.27 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.08/1.27 2.08/1.27 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_2 >= 0 ] 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + 1 ] 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 ] 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_2 - 1, ar_1, ar_0 - 1, ar_3)) 2.08/1.27 2.08/1.27 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.08/1.27 2.08/1.27 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.08/1.27 2.08/1.27 start location: koat_start 2.08/1.27 2.08/1.27 leaf cost: 0 2.08/1.27 2.08/1.27 2.08/1.27 2.08/1.27 A polynomial rank function with 2.08/1.27 2.08/1.27 Pol(evalfoostart) = 2 2.08/1.27 2.08/1.27 Pol(evalfoobb0in) = 2 2.08/1.27 2.08/1.27 Pol(evalfoobb1in) = 2 2.08/1.27 2.08/1.27 Pol(evalfoobb2in) = 2 2.08/1.27 2.08/1.27 Pol(evalfoobb3in) = 1 2.08/1.27 2.08/1.27 Pol(evalfoostop) = 0 2.08/1.27 2.08/1.27 Pol(koat_start) = 2 2.08/1.27 2.08/1.27 orients all transitions weakly and the transitions 2.08/1.27 2.08/1.27 evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.08/1.27 2.08/1.27 evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 ] 2.08/1.27 2.08/1.27 evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + 1 ] 2.08/1.27 2.08/1.27 strictly and produces the following problem: 2.08/1.28 2.08/1.28 3: T: 2.08/1.28 2.08/1.28 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.08/1.28 2.08/1.28 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.08/1.28 2.08/1.28 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_2 >= 0 ] 2.08/1.28 2.08/1.28 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + 1 ] 2.08/1.28 2.08/1.28 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 ] 2.08/1.28 2.08/1.28 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_2 - 1, ar_1, ar_0 - 1, ar_3)) 2.08/1.28 2.08/1.28 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.08/1.28 2.08/1.28 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.08/1.28 2.08/1.28 start location: koat_start 2.08/1.28 2.08/1.28 leaf cost: 0 2.08/1.28 2.08/1.28 2.08/1.28 2.08/1.28 A polynomial rank function with 2.08/1.28 2.08/1.28 Pol(evalfoostart) = V_2 + V_4 + 2 2.08/1.28 2.08/1.28 Pol(evalfoobb0in) = V_2 + V_4 + 2 2.08/1.28 2.08/1.28 Pol(evalfoobb1in) = V_1 + V_3 + 2 2.08/1.28 2.08/1.28 Pol(evalfoobb2in) = V_1 + V_3 2.08/1.28 2.08/1.28 Pol(evalfoobb3in) = V_1 + V_3 2.08/1.28 2.08/1.28 Pol(evalfoostop) = V_1 + V_3 2.08/1.28 2.08/1.28 Pol(koat_start) = V_2 + V_4 + 2 2.08/1.28 2.08/1.28 orients all transitions weakly and the transition 2.08/1.28 2.08/1.28 evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_2 >= 0 ] 2.08/1.28 2.08/1.28 strictly and produces the following problem: 2.08/1.28 2.08/1.28 4: T: 2.08/1.28 2.08/1.28 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.08/1.28 2.08/1.28 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.08/1.28 2.08/1.28 (Comp: ar_1 + ar_3 + 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_2 >= 0 ] 2.08/1.28 2.08/1.28 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + 1 ] 2.08/1.28 2.08/1.28 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 ] 2.08/1.28 2.08/1.28 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_2 - 1, ar_1, ar_0 - 1, ar_3)) 2.08/1.28 2.08/1.28 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.08/1.28 2.08/1.28 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.08/1.28 2.08/1.28 start location: koat_start 2.08/1.28 2.08/1.28 leaf cost: 0 2.08/1.28 2.08/1.28 2.08/1.28 2.08/1.28 Repeatedly propagating knowledge in problem 4 produces the following problem: 2.08/1.28 2.08/1.28 5: T: 2.08/1.28 2.08/1.28 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.08/1.28 2.08/1.28 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.08/1.28 2.08/1.28 (Comp: ar_1 + ar_3 + 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= 0 /\ ar_2 >= 0 ] 2.08/1.28 2.08/1.28 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + 1 ] 2.08/1.28 2.08/1.28 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_2 + 1 ] 2.08/1.28 2.08/1.28 (Comp: ar_1 + ar_3 + 2, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_2 - 1, ar_1, ar_0 - 1, ar_3)) 2.08/1.28 2.08/1.28 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.08/1.28 2.08/1.28 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.08/1.28 2.08/1.28 start location: koat_start 2.08/1.28 2.08/1.28 leaf cost: 0 2.08/1.28 2.08/1.28 2.08/1.28 2.08/1.28 Complexity upper bound 2*ar_1 + 2*ar_3 + 12 2.08/1.28 2.08/1.28 2.08/1.28 2.08/1.28 Time: 0.069 sec (SMT: 0.061 sec) 2.08/1.28 2.08/1.28 2.08/1.28 ---------------------------------------- 2.08/1.28 2.08/1.28 (2) 2.08/1.28 BOUNDS(1, n^1) 2.08/1.29 EOF