2.26/1.37 WORST_CASE(?, O(n^1)) 2.26/1.38 proof of /export/starexec/sandbox2/output/output_files/bench.koat 2.26/1.38 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.26/1.38 2.26/1.38 2.26/1.38 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.26/1.38 2.26/1.38 (0) CpxIntTrs 2.26/1.38 (1) Koat Proof [FINISHED, 187 ms] 2.26/1.38 (2) BOUNDS(1, n^1) 2.26/1.38 2.26/1.38 2.26/1.38 ---------------------------------------- 2.26/1.38 2.26/1.38 (0) 2.26/1.38 Obligation: 2.26/1.38 Complexity Int TRS consisting of the following rules: 2.26/1.38 eval_foo_start(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb0_in(v_.0, v_.01, v_x, v_y)) :|: TRUE 2.26/1.38 eval_foo_bb0_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_x, v_y, v_x, v_y)) :|: TRUE 2.26/1.38 eval_foo_bb1_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb2_in(v_.0, v_.01, v_x, v_y)) :|: v_.0 + v_.01 > 0 2.26/1.38 eval_foo_bb1_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb5_in(v_.0, v_.01, v_x, v_y)) :|: v_.0 + v_.01 <= 0 2.26/1.38 eval_foo_bb2_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_x, v_y)) :|: v_.0 > v_.01 2.26/1.38 eval_foo_bb2_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb4_in(v_.0, v_.01, v_x, v_y)) :|: v_.0 <= v_.01 2.26/1.38 eval_foo_bb3_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0 - 1, v_.01, v_x, v_y)) :|: TRUE 2.26/1.38 eval_foo_bb4_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0 - 1, v_.01, v_x, v_y)) :|: v_.0 >= v_.01 && v_.0 <= v_.01 2.26/1.38 eval_foo_bb4_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0, v_.01, v_x, v_y)) :|: v_.0 >= v_.01 && v_.0 <= v_.01 && v_.0 < v_.01 2.26/1.38 eval_foo_bb4_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0, v_.01, v_x, v_y)) :|: v_.0 >= v_.01 && v_.0 <= v_.01 && v_.0 > v_.01 2.26/1.38 eval_foo_bb4_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0 - 1, v_.01 - 1, v_x, v_y)) :|: v_.0 < v_.01 && v_.0 >= v_.01 && v_.0 <= v_.01 2.26/1.38 eval_foo_bb4_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0 - 1, v_.01 - 1, v_x, v_y)) :|: v_.0 > v_.01 && v_.0 >= v_.01 && v_.0 <= v_.01 2.26/1.38 eval_foo_bb4_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0, v_.01 - 1, v_x, v_y)) :|: v_.0 < v_.01 2.26/1.38 eval_foo_bb4_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0, v_.01 - 1, v_x, v_y)) :|: v_.0 < v_.01 && v_.0 > v_.01 2.26/1.38 eval_foo_bb4_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0, v_.01 - 1, v_x, v_y)) :|: v_.0 > v_.01 2.26/1.38 eval_foo_bb5_in(v_.0, v_.01, v_x, v_y) -> Com_1(eval_foo_stop(v_.0, v_.01, v_x, v_y)) :|: TRUE 2.26/1.38 2.26/1.38 The start-symbols are:[eval_foo_start_4] 2.26/1.38 2.26/1.38 2.26/1.38 ---------------------------------------- 2.26/1.38 2.26/1.38 (1) Koat Proof (FINISHED) 2.26/1.38 YES(?, 6*ar_1 + 6*ar_3 + 12) 2.26/1.38 2.26/1.38 2.26/1.38 2.26/1.38 Initial complexity problem: 2.26/1.38 2.26/1.38 1: T: 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 + ar_2 >= 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) [ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= 1 /\ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= 1 /\ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2 - 1, ar_3)) [ 0 >= 1 /\ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2 - 1, ar_3)) [ 0 >= 1 /\ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= ar_0 + 1 /\ ar_0 >= ar_2 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_0 >= ar_2 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.26/1.38 2.26/1.38 start location: koat_start 2.26/1.38 2.26/1.38 leaf cost: 0 2.26/1.38 2.26/1.38 2.26/1.38 2.26/1.38 Testing for reachability in the complexity graph removes the following transitions from problem 1: 2.26/1.38 2.26/1.38 evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= 1 /\ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= 1 /\ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2 - 1, ar_3)) [ 0 >= 1 /\ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2 - 1, ar_3)) [ 0 >= 1 /\ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= ar_0 + 1 /\ ar_0 >= ar_2 + 1 ] 2.26/1.38 2.26/1.38 evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_0 >= ar_2 + 1 ] 2.26/1.38 2.26/1.38 We thus obtain the following problem: 2.26/1.38 2.26/1.38 2: T: 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) [ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 + ar_2 >= 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.26/1.38 2.26/1.38 start location: koat_start 2.26/1.38 2.26/1.38 leaf cost: 0 2.26/1.38 2.26/1.38 2.26/1.38 2.26/1.38 Repeatedly propagating knowledge in problem 2 produces the following problem: 2.26/1.38 2.26/1.38 3: T: 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) [ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 + ar_2 >= 1 ] 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.26/1.38 2.26/1.38 start location: koat_start 2.26/1.38 2.26/1.38 leaf cost: 0 2.26/1.38 2.26/1.38 2.26/1.38 2.26/1.38 A polynomial rank function with 2.26/1.38 2.26/1.38 Pol(evalfoobb4in) = 2 2.26/1.38 2.26/1.38 Pol(evalfoobb1in) = 2 2.26/1.38 2.26/1.38 Pol(evalfoobb3in) = 2 2.26/1.38 2.26/1.38 Pol(evalfoobb5in) = 1 2.26/1.38 2.26/1.38 Pol(evalfoostop) = 0 2.26/1.38 2.26/1.38 Pol(evalfoobb2in) = 2 2.26/1.38 2.26/1.38 Pol(evalfoobb0in) = 2 2.26/1.38 2.26/1.38 Pol(evalfoostart) = 2 2.26/1.38 2.26/1.38 Pol(koat_start) = 2 2.26/1.38 2.26/1.38 orients all transitions weakly and the transitions 2.26/1.38 2.26/1.38 evalfoobb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + ar_2 ] 2.26/1.38 2.26/1.38 strictly and produces the following problem: 2.26/1.38 2.26/1.38 4: T: 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) [ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 2, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 + 1 ] 2.26/1.38 2.26/1.38 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 + ar_2 >= 1 ] 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.26/1.38 2.26/1.38 start location: koat_start 2.26/1.38 2.26/1.38 leaf cost: 0 2.26/1.38 2.26/1.38 2.26/1.38 2.26/1.38 A polynomial rank function with 2.26/1.38 2.26/1.38 Pol(evalfoobb4in) = V_1 + V_3 2.26/1.38 2.26/1.38 Pol(evalfoobb1in) = V_1 + V_3 + 1 2.26/1.38 2.26/1.38 Pol(evalfoobb3in) = V_1 + V_3 2.26/1.38 2.26/1.38 Pol(evalfoobb5in) = V_1 + V_3 2.26/1.38 2.26/1.38 Pol(evalfoostop) = V_1 + V_3 2.26/1.38 2.26/1.38 Pol(evalfoobb2in) = V_1 + V_3 2.26/1.38 2.26/1.38 Pol(evalfoobb0in) = V_2 + V_4 + 1 2.26/1.38 2.26/1.38 Pol(evalfoostart) = V_2 + V_4 + 1 2.26/1.38 2.26/1.38 Pol(koat_start) = V_2 + V_4 + 1 2.26/1.38 2.26/1.38 orients all transitions weakly and the transition 2.26/1.38 2.26/1.38 evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 + ar_2 >= 1 ] 2.26/1.38 2.26/1.38 strictly and produces the following problem: 2.26/1.38 2.26/1.38 5: T: 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) [ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 2, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 ] 2.26/1.38 2.26/1.38 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 + 1 ] 2.26/1.38 2.26/1.38 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ar_1 + ar_3 + 1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 + ar_2 >= 1 ] 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.26/1.38 2.26/1.38 start location: koat_start 2.26/1.38 2.26/1.38 leaf cost: 0 2.26/1.38 2.26/1.38 2.26/1.38 2.26/1.38 Repeatedly propagating knowledge in problem 5 produces the following problem: 2.26/1.38 2.26/1.38 6: T: 2.26/1.38 2.26/1.38 (Comp: ar_1 + ar_3 + 1, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0, ar_1, ar_2 - 1, ar_3)) [ ar_2 >= ar_0 + 1 ] 2.26/1.38 2.26/1.38 (Comp: ar_1 + ar_3 + 1, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) [ ar_0 = ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ar_1 + ar_3 + 1, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_0 - 1, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 2, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: ar_1 + ar_3 + 1, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 ] 2.26/1.38 2.26/1.38 (Comp: ar_1 + ar_3 + 1, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 + 1 ] 2.26/1.38 2.26/1.38 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_0 + ar_2 ] 2.26/1.38 2.26/1.38 (Comp: ar_1 + ar_3 + 1, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 + ar_2 >= 1 ] 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3)) 2.26/1.38 2.26/1.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 2.26/1.38 2.26/1.38 start location: koat_start 2.26/1.38 2.26/1.38 leaf cost: 0 2.26/1.38 2.26/1.38 2.26/1.38 2.26/1.38 Complexity upper bound 6*ar_1 + 6*ar_3 + 12 2.26/1.38 2.26/1.38 2.26/1.38 2.26/1.38 Time: 0.121 sec (SMT: 0.107 sec) 2.26/1.38 2.26/1.38 2.26/1.38 ---------------------------------------- 2.26/1.38 2.26/1.38 (2) 2.26/1.38 BOUNDS(1, n^1) 2.44/1.40 EOF