2.36/1.67 WORST_CASE(?, O(1)) 2.36/1.68 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.36/1.68 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.36/1.68 2.36/1.68 2.36/1.68 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 2.36/1.68 2.36/1.68 (0) CpxIntTrs 2.36/1.68 (1) Koat Proof [FINISHED, 481 ms] 2.36/1.68 (2) BOUNDS(1, 1) 2.36/1.68 2.36/1.68 2.36/1.68 ---------------------------------------- 2.36/1.68 2.36/1.68 (0) 2.36/1.68 Obligation: 2.36/1.68 Complexity Int TRS consisting of the following rules: 2.36/1.68 eval_foo_start(v_.0, v_x) -> Com_1(eval_foo_bb0_in(v_.0, v_x)) :|: TRUE 2.36/1.68 eval_foo_bb0_in(v_.0, v_x) -> Com_1(eval_foo_bb1_in(v_x, v_x)) :|: TRUE 2.36/1.68 eval_foo_bb1_in(v_.0, v_x) -> Com_1(eval_foo_bb2_in(v_.0, v_x)) :|: v_.0 >= 0 2.36/1.68 eval_foo_bb1_in(v_.0, v_x) -> Com_1(eval_foo_bb3_in(v_.0, v_x)) :|: v_.0 < 0 2.36/1.68 eval_foo_bb2_in(v_.0, v_x) -> Com_1(eval_foo_bb1_in(-(2) * v_.0 + 10, v_x)) :|: TRUE 2.36/1.68 eval_foo_bb3_in(v_.0, v_x) -> Com_1(eval_foo_stop(v_.0, v_x)) :|: TRUE 2.36/1.68 2.36/1.68 The start-symbols are:[eval_foo_start_2] 2.36/1.68 2.36/1.68 2.36/1.68 ---------------------------------------- 2.36/1.68 2.36/1.68 (1) Koat Proof (FINISHED) 2.36/1.68 YES(?, 42) 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 Initial complexity problem: 2.36/1.68 2.36/1.68 1: T: 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 + 1 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.36/1.68 2.36/1.68 2: T: 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 + 1 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 A polynomial rank function with 2.36/1.68 2.36/1.68 Pol(evalfoostart) = 2 2.36/1.68 2.36/1.68 Pol(evalfoobb0in) = 2 2.36/1.68 2.36/1.68 Pol(evalfoobb1in) = 2 2.36/1.68 2.36/1.68 Pol(evalfoobb2in) = 2 2.36/1.68 2.36/1.68 Pol(evalfoobb3in) = 1 2.36/1.68 2.36/1.68 Pol(evalfoostop) = 0 2.36/1.68 2.36/1.68 Pol(koat_start) = 2 2.36/1.68 2.36/1.68 orients all transitions weakly and the transitions 2.36/1.68 2.36/1.68 evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.36/1.68 2.36/1.68 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 + 1 ] 2.36/1.68 2.36/1.68 strictly and produces the following problem: 2.36/1.68 2.36/1.68 3: T: 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 + 1 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 Applied AI with 'oct' on problem 3 to obtain the following invariants: 2.36/1.68 2.36/1.68 For symbol evalfoobb2in: X_1 >= 0 2.36/1.68 2.36/1.68 For symbol evalfoobb3in: -X_1 - 1 >= 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 This yielded the following problem: 2.36/1.68 2.36/1.68 4: T: 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 + 1 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 By chaining the transition koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] with all transitions in problem 4, the following new transition is obtained: 2.36/1.68 2.36/1.68 koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 5: T: 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 + 1 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 Testing for reachability in the complexity graph removes the following transition from problem 5: 2.36/1.68 2.36/1.68 evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 6: T: 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 + 1 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 By chaining the transition evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 >= 0 ] with all transitions in problem 6, the following new transition is obtained: 2.36/1.68 2.36/1.68 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 7: T: 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 + 1 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 Testing for reachability in the complexity graph removes the following transition from problem 7: 2.36/1.68 2.36/1.68 evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 8: T: 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 + 1 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 By chaining the transition evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 + 1 ] with all transitions in problem 8, the following new transition is obtained: 2.36/1.68 2.36/1.68 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ 0 >= ar_0 + 1 /\ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 9: T: 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ 0 >= ar_0 + 1 /\ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 Testing for reachability in the complexity graph removes the following transition from problem 9: 2.36/1.68 2.36/1.68 evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 10: T: 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ 0 >= ar_0 + 1 /\ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 By chaining the transition koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] with all transitions in problem 10, the following new transition is obtained: 2.36/1.68 2.36/1.68 koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 11: T: 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 2) koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ 0 >= ar_0 + 1 /\ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 Testing for reachability in the complexity graph removes the following transition from problem 11: 2.36/1.68 2.36/1.68 evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 12: T: 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ 0 >= ar_0 + 1 /\ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 2) koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) [ 0 <= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 By chaining the transition koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_1, ar_1)) [ 0 <= 0 ] with all transitions in problem 12, the following new transitions are obtained: 2.36/1.68 2.36/1.68 koat_start(ar_0, ar_1) -> Com_1(evalfoostop(ar_1, ar_1)) [ 0 <= 0 /\ 0 >= ar_1 + 1 /\ -ar_1 - 1 >= 0 ] 2.36/1.68 2.36/1.68 koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_1 + 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 13: T: 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 4) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(ar_1, ar_1)) [ 0 <= 0 /\ 0 >= ar_1 + 1 /\ -ar_1 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 4) koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_1 + 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ 0 >= ar_0 + 1 /\ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 By chaining the transition koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_1 + 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 ] with all transitions in problem 13, the following new transitions are obtained: 2.36/1.68 2.36/1.68 koat_start(ar_0, ar_1) -> Com_1(evalfoostop(-2*ar_1 + 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ 0 >= -2*ar_1 + 11 /\ 2*ar_1 - 11 >= 0 ] 2.36/1.68 2.36/1.68 koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(4*ar_1 - 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 14: T: 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 6) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(-2*ar_1 + 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ 0 >= -2*ar_1 + 11 /\ 2*ar_1 - 11 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 6) koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(4*ar_1 - 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 4) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(ar_1, ar_1)) [ 0 <= 0 /\ 0 >= ar_1 + 1 /\ -ar_1 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ 0 >= ar_0 + 1 /\ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 By chaining the transition koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(4*ar_1 - 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 ] with all transitions in problem 14, the following new transitions are obtained: 2.36/1.68 2.36/1.68 koat_start(ar_0, ar_1) -> Com_1(evalfoostop(4*ar_1 - 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 0 >= 4*ar_1 - 9 /\ -4*ar_1 + 9 >= 0 ] 2.36/1.68 2.36/1.68 koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(-8*ar_1 + 30, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 4*ar_1 - 10 >= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 15: T: 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 8) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(4*ar_1 - 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 0 >= 4*ar_1 - 9 /\ -4*ar_1 + 9 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 8) koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(-8*ar_1 + 30, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 4*ar_1 - 10 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 6) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(-2*ar_1 + 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ 0 >= -2*ar_1 + 11 /\ 2*ar_1 - 11 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 4) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(ar_1, ar_1)) [ 0 <= 0 /\ 0 >= ar_1 + 1 /\ -ar_1 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ 0 >= ar_0 + 1 /\ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 By chaining the transition koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(-8*ar_1 + 30, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 4*ar_1 - 10 >= 0 ] with all transitions in problem 15, the following new transitions are obtained: 2.36/1.68 2.36/1.68 koat_start(ar_0, ar_1) -> Com_1(evalfoostop(-8*ar_1 + 30, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 4*ar_1 - 10 >= 0 /\ 0 >= -8*ar_1 + 31 /\ 8*ar_1 - 31 >= 0 ] 2.36/1.68 2.36/1.68 koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(16*ar_1 - 50, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 4*ar_1 - 10 >= 0 /\ -8*ar_1 + 30 >= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 16: T: 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 10) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(-8*ar_1 + 30, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 4*ar_1 - 10 >= 0 /\ 0 >= -8*ar_1 + 31 /\ 8*ar_1 - 31 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 10) koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(16*ar_1 - 50, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 4*ar_1 - 10 >= 0 /\ -8*ar_1 + 30 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 8) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(4*ar_1 - 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 0 >= 4*ar_1 - 9 /\ -4*ar_1 + 9 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 6) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(-2*ar_1 + 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ 0 >= -2*ar_1 + 11 /\ 2*ar_1 - 11 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 4) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(ar_1, ar_1)) [ 0 <= 0 /\ 0 >= ar_1 + 1 /\ -ar_1 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ 0 >= ar_0 + 1 /\ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 Testing for reachability in the complexity graph removes the following transition from problem 16: 2.36/1.68 2.36/1.68 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(-2*ar_0 + 10, ar_1)) [ ar_0 >= 0 ] 2.36/1.68 2.36/1.68 We thus obtain the following problem: 2.36/1.68 2.36/1.68 17: T: 2.36/1.68 2.36/1.68 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ 0 >= ar_0 + 1 /\ -ar_0 - 1 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 10) koat_start(ar_0, ar_1) -> Com_1(evalfoobb1in(16*ar_1 - 50, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 4*ar_1 - 10 >= 0 /\ -8*ar_1 + 30 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 10) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(-8*ar_1 + 30, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 4*ar_1 - 10 >= 0 /\ 0 >= -8*ar_1 + 31 /\ 8*ar_1 - 31 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 8) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(4*ar_1 - 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ -2*ar_1 + 10 >= 0 /\ 0 >= 4*ar_1 - 9 /\ -4*ar_1 + 9 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 6) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(-2*ar_1 + 10, ar_1)) [ 0 <= 0 /\ ar_1 >= 0 /\ 0 >= -2*ar_1 + 11 /\ 2*ar_1 - 11 >= 0 ] 2.36/1.68 2.36/1.68 (Comp: 1, Cost: 4) koat_start(ar_0, ar_1) -> Com_1(evalfoostop(ar_1, ar_1)) [ 0 <= 0 /\ 0 >= ar_1 + 1 /\ -ar_1 - 1 >= 0 ] 2.36/1.68 2.36/1.68 start location: koat_start 2.36/1.68 2.36/1.68 leaf cost: 0 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 Complexity upper bound 42 2.36/1.68 2.36/1.68 2.36/1.68 2.36/1.68 Time: 0.462 sec (SMT: 0.425 sec) 2.36/1.68 2.36/1.68 2.36/1.68 ---------------------------------------- 2.36/1.68 2.36/1.68 (2) 2.36/1.68 BOUNDS(1, 1) 2.47/1.70 EOF