2.29/1.34 WORST_CASE(?, O(n^1)) 2.29/1.35 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.29/1.35 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.29/1.35 2.29/1.35 2.29/1.35 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.29/1.35 2.29/1.35 (0) CpxIntTrs 2.29/1.35 (1) Koat Proof [FINISHED, 84 ms] 2.29/1.35 (2) BOUNDS(1, n^1) 2.29/1.35 2.29/1.35 2.29/1.35 ---------------------------------------- 2.29/1.35 2.29/1.35 (0) 2.29/1.35 Obligation: 2.29/1.35 Complexity Int TRS consisting of the following rules: 2.29/1.35 eval_foo_start(v_.0, v_x, v_y) -> Com_1(eval_foo_bb0_in(v_.0, v_x, v_y)) :|: TRUE 2.29/1.35 eval_foo_bb0_in(v_.0, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_y, v_x, v_y)) :|: TRUE 2.29/1.35 eval_foo_bb1_in(v_.0, v_x, v_y) -> Com_1(eval_foo_bb2_in(v_.0, v_x, v_y)) :|: v_x > 0 && v_x > v_.0 2.29/1.35 eval_foo_bb1_in(v_.0, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.0, v_x, v_y)) :|: v_x <= 0 2.29/1.35 eval_foo_bb1_in(v_.0, v_x, v_y) -> Com_1(eval_foo_bb3_in(v_.0, v_x, v_y)) :|: v_x <= v_.0 2.29/1.35 eval_foo_bb2_in(v_.0, v_x, v_y) -> Com_1(eval_foo_bb1_in(v_.0 + v_x, v_x, v_y)) :|: TRUE 2.29/1.35 eval_foo_bb3_in(v_.0, v_x, v_y) -> Com_1(eval_foo_stop(v_.0, v_x, v_y)) :|: TRUE 2.29/1.35 2.29/1.35 The start-symbols are:[eval_foo_start_3] 2.29/1.35 2.29/1.35 2.29/1.35 ---------------------------------------- 2.29/1.35 2.29/1.35 (1) Koat Proof (FINISHED) 2.29/1.35 YES(?, 2*ar_1 + 2*ar_2 + 8) 2.29/1.35 2.29/1.35 2.29/1.35 2.29/1.35 Initial complexity problem: 2.29/1.35 2.29/1.35 1: T: 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 /\ ar_2 >= ar_0 + 1 ] 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 + ar_2, ar_1, ar_2)) 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.29/1.35 2.29/1.35 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.29/1.35 2.29/1.35 start location: koat_start 2.29/1.35 2.29/1.35 leaf cost: 0 2.29/1.35 2.29/1.35 2.29/1.35 2.29/1.35 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.29/1.35 2.29/1.35 2: T: 2.29/1.35 2.29/1.35 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.29/1.35 2.29/1.35 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 /\ ar_2 >= ar_0 + 1 ] 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 + ar_2, ar_1, ar_2)) 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.29/1.35 2.29/1.35 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.29/1.35 2.29/1.35 start location: koat_start 2.29/1.35 2.29/1.35 leaf cost: 0 2.29/1.35 2.29/1.35 2.29/1.35 2.29/1.35 A polynomial rank function with 2.29/1.35 2.29/1.35 Pol(evalfoostart) = 2 2.29/1.35 2.29/1.35 Pol(evalfoobb0in) = 2 2.29/1.35 2.29/1.35 Pol(evalfoobb1in) = 2 2.29/1.35 2.29/1.35 Pol(evalfoobb2in) = 2 2.29/1.35 2.29/1.35 Pol(evalfoobb3in) = 1 2.29/1.35 2.29/1.35 Pol(evalfoostop) = 0 2.29/1.35 2.29/1.35 Pol(koat_start) = 2 2.29/1.35 2.29/1.35 orients all transitions weakly and the transitions 2.29/1.35 2.29/1.35 evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.29/1.35 2.29/1.35 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 2.29/1.35 2.29/1.35 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.29/1.35 2.29/1.35 strictly and produces the following problem: 2.29/1.35 2.29/1.35 3: T: 2.29/1.35 2.29/1.35 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.29/1.35 2.29/1.35 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.29/1.35 2.29/1.35 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 /\ ar_2 >= ar_0 + 1 ] 2.29/1.35 2.29/1.35 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.29/1.36 2.29/1.36 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 2.29/1.36 2.29/1.36 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 + ar_2, ar_1, ar_2)) 2.29/1.36 2.29/1.36 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.29/1.36 2.29/1.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.29/1.36 2.29/1.36 start location: koat_start 2.29/1.36 2.29/1.36 leaf cost: 0 2.29/1.36 2.29/1.36 2.29/1.36 2.29/1.36 A polynomial rank function with 2.29/1.36 2.29/1.36 Pol(evalfoostart) = -V_2 + V_3 2.29/1.36 2.29/1.36 Pol(evalfoobb0in) = -V_2 + V_3 2.29/1.36 2.29/1.36 Pol(evalfoobb1in) = -V_1 + V_3 2.29/1.36 2.29/1.36 Pol(evalfoobb2in) = -V_1 2.29/1.36 2.29/1.36 Pol(evalfoobb3in) = -V_1 + V_3 2.29/1.36 2.29/1.36 Pol(evalfoostop) = -V_1 + V_3 2.29/1.36 2.29/1.36 Pol(koat_start) = -V_2 + V_3 2.29/1.36 2.29/1.36 orients all transitions weakly and the transition 2.29/1.36 2.29/1.36 evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 /\ ar_2 >= ar_0 + 1 ] 2.29/1.36 2.29/1.36 strictly and produces the following problem: 2.29/1.36 2.29/1.36 4: T: 2.29/1.36 2.29/1.36 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.29/1.36 2.29/1.36 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.29/1.36 2.29/1.36 (Comp: ar_1 + ar_2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 /\ ar_2 >= ar_0 + 1 ] 2.29/1.36 2.29/1.36 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.29/1.36 2.29/1.36 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 2.29/1.36 2.29/1.36 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 + ar_2, ar_1, ar_2)) 2.29/1.36 2.29/1.36 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.29/1.36 2.29/1.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.29/1.36 2.29/1.36 start location: koat_start 2.29/1.36 2.29/1.36 leaf cost: 0 2.29/1.36 2.29/1.36 2.29/1.36 2.29/1.36 Repeatedly propagating knowledge in problem 4 produces the following problem: 2.29/1.36 2.29/1.36 5: T: 2.29/1.36 2.29/1.36 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2)) 2.29/1.36 2.29/1.36 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2)) 2.29/1.36 2.29/1.36 (Comp: ar_1 + ar_2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 /\ ar_2 >= ar_0 + 1 ] 2.29/1.36 2.29/1.36 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 2.29/1.36 2.29/1.36 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] 2.29/1.36 2.29/1.36 (Comp: ar_1 + ar_2, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2) -> Com_1(evalfoobb1in(ar_0 + ar_2, ar_1, ar_2)) 2.29/1.36 2.29/1.36 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2) -> Com_1(evalfoostop(ar_0, ar_1, ar_2)) 2.29/1.36 2.29/1.36 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalfoostart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.29/1.36 2.29/1.36 start location: koat_start 2.29/1.36 2.29/1.36 leaf cost: 0 2.29/1.36 2.29/1.36 2.29/1.36 2.29/1.36 Complexity upper bound 2*ar_1 + 2*ar_2 + 8 2.29/1.36 2.29/1.36 2.29/1.36 2.29/1.36 Time: 0.081 sec (SMT: 0.074 sec) 2.29/1.36 2.29/1.36 2.29/1.36 ---------------------------------------- 2.29/1.36 2.29/1.36 (2) 2.29/1.36 BOUNDS(1, n^1) 2.32/1.38 EOF