2.14/1.39 WORST_CASE(?, O(n^1)) 2.44/1.40 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.44/1.40 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.44/1.40 2.44/1.40 2.44/1.40 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.44/1.40 2.44/1.40 (0) CpxIntTrs 2.44/1.40 (1) Koat Proof [FINISHED, 275 ms] 2.44/1.40 (2) BOUNDS(1, n^1) 2.44/1.40 2.44/1.40 2.44/1.40 ---------------------------------------- 2.44/1.40 2.44/1.40 (0) 2.44/1.40 Obligation: 2.44/1.40 Complexity Int TRS consisting of the following rules: 2.44/1.40 eval_foo_start(v_.0, v_x) -> Com_1(eval_foo_bb0_in(v_.0, v_x)) :|: TRUE 2.44/1.40 eval_foo_bb0_in(v_.0, v_x) -> Com_1(eval_foo_bb1_in(v_x, v_x)) :|: v_x > 0 2.44/1.40 eval_foo_bb0_in(v_.0, v_x) -> Com_1(eval_foo_bb3_in(v_.0, v_x)) :|: v_x <= 0 2.44/1.40 eval_foo_bb1_in(v_.0, v_x) -> Com_1(eval_foo_bb2_in(v_.0, v_x)) :|: v_.0 < 0 2.44/1.40 eval_foo_bb1_in(v_.0, v_x) -> Com_1(eval_foo_bb2_in(v_.0, v_x)) :|: v_.0 > 0 2.44/1.40 eval_foo_bb1_in(v_.0, v_x) -> Com_1(eval_foo_bb3_in(v_.0, v_x)) :|: v_.0 >= 0 && v_.0 <= 0 2.44/1.40 eval_foo_bb2_in(v_.0, v_x) -> Com_1(eval_foo_bb1_in(v_.0 - 1, v_x)) :|: TRUE 2.44/1.40 eval_foo_bb3_in(v_.0, v_x) -> Com_1(eval_foo_stop(v_.0, v_x)) :|: TRUE 2.44/1.40 2.44/1.40 The start-symbols are:[eval_foo_start_2] 2.44/1.40 2.44/1.40 2.44/1.40 ---------------------------------------- 2.44/1.40 2.44/1.40 (1) Koat Proof (FINISHED) 2.44/1.40 YES(?, 2*ar_0 + 9) 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 Initial complexity problem: 2.44/1.40 2.44/1.40 1: T: 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.44/1.40 2.44/1.40 2: T: 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 A polynomial rank function with 2.44/1.40 2.44/1.40 Pol(evalfoostart) = 2 2.44/1.40 2.44/1.40 Pol(evalfoobb0in) = 2 2.44/1.40 2.44/1.40 Pol(evalfoobb1in) = 2 2.44/1.40 2.44/1.40 Pol(evalfoobb3in) = 1 2.44/1.40 2.44/1.40 Pol(evalfoobb2in) = 2 2.44/1.40 2.44/1.40 Pol(evalfoostop) = 0 2.44/1.40 2.44/1.40 Pol(koat_start) = 2 2.44/1.40 2.44/1.40 orients all transitions weakly and the transitions 2.44/1.40 2.44/1.40 evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_1 = 0 ] 2.44/1.40 2.44/1.40 strictly and produces the following problem: 2.44/1.40 2.44/1.40 3: T: 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 A polynomial rank function with 2.44/1.40 2.44/1.40 Pol(evalfoobb2in) = V_2 - 1 2.44/1.40 2.44/1.40 Pol(evalfoobb1in) = V_2 2.44/1.40 2.44/1.40 and size complexities 2.44/1.40 2.44/1.40 S("koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ]", 0-0) = ar_0 2.44/1.40 2.44/1.40 S("koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ]", 0-1) = ar_1 2.44/1.40 2.44/1.40 S("evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1))", 0-0) = ar_0 2.44/1.40 2.44/1.40 S("evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1))", 0-1) = ar_1 2.44/1.40 2.44/1.40 S("evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1))", 0-0) = ar_0 2.44/1.40 2.44/1.40 S("evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1))", 0-1) = ? 2.44/1.40 2.44/1.40 S("evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_1 = 0 ]", 0-0) = ar_0 2.44/1.40 2.44/1.40 S("evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_1 = 0 ]", 0-1) = 0 2.44/1.40 2.44/1.40 S("evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= 1 ]", 0-0) = ar_0 2.44/1.40 2.44/1.40 S("evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= 1 ]", 0-1) = ? 2.44/1.40 2.44/1.40 S("evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ 0 >= ar_1 + 1 ]", 0-0) = ar_0 2.44/1.40 2.44/1.40 S("evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ 0 >= ar_1 + 1 ]", 0-1) = ? 2.44/1.40 2.44/1.40 S("evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ]", 0-0) = ar_0 2.44/1.40 2.44/1.40 S("evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ]", 0-1) = ar_1 2.44/1.40 2.44/1.40 S("evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ]", 0-0) = ar_0 2.44/1.40 2.44/1.40 S("evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ]", 0-1) = ar_0 2.44/1.40 2.44/1.40 S("evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1))", 0-0) = ar_0 2.44/1.40 2.44/1.40 S("evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1))", 0-1) = ar_1 2.44/1.40 2.44/1.40 orients the transitions 2.44/1.40 2.44/1.40 evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) 2.44/1.40 2.44/1.40 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 weakly and the transition 2.44/1.40 2.44/1.40 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 strictly and produces the following problem: 2.44/1.40 2.44/1.40 4: T: 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 Applied AI with 'oct' on problem 4 to obtain the following invariants: 2.44/1.40 2.44/1.40 For symbol evalfoobb1in: X_1 - X_2 >= 0 /\ X_1 - 1 >= 0 2.44/1.40 2.44/1.40 For symbol evalfoobb2in: X_1 - X_2 >= 0 /\ X_1 - 1 >= 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 This yielded the following problem: 2.44/1.40 2.44/1.40 5: T: 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 By chaining the transition koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] with all transitions in problem 5, the following new transition is obtained: 2.44/1.40 2.44/1.40 koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 We thus obtain the following problem: 2.44/1.40 2.44/1.40 6: T: 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 Testing for reachability in the complexity graph removes the following transition from problem 6: 2.44/1.40 2.44/1.40 evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.44/1.40 2.44/1.40 We thus obtain the following problem: 2.44/1.40 2.44/1.40 7: T: 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 By chaining the transition evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ 0 >= ar_1 + 1 ] with all transitions in problem 7, the following new transition is obtained: 2.44/1.40 2.44/1.40 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 We thus obtain the following problem: 2.44/1.40 2.44/1.40 8: T: 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 Repeatedly propagating knowledge in problem 8 produces the following problem: 2.44/1.40 2.44/1.40 9: T: 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 By chaining the transition evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 = 0 ] with all transitions in problem 9, the following new transition is obtained: 2.44/1.40 2.44/1.40 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 = 0 ] 2.44/1.40 2.44/1.40 We thus obtain the following problem: 2.44/1.40 2.44/1.40 10: T: 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 By chaining the transition evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 >= 1 ] with all transitions in problem 10, the following new transition is obtained: 2.44/1.40 2.44/1.40 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 We thus obtain the following problem: 2.44/1.40 2.44/1.40 11: T: 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ?, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 Testing for reachability in the complexity graph removes the following transitions from problem 11: 2.44/1.40 2.44/1.40 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ 0 >= ar_1 + 1 ] 2.44/1.40 2.44/1.40 evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 ] 2.44/1.40 2.44/1.40 We thus obtain the following problem: 2.44/1.40 2.44/1.40 12: T: 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 = 0 ] 2.44/1.40 2.44/1.40 (Comp: ar_0, Cost: 2) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_1 - 1)) [ ar_0 - ar_1 >= 0 /\ ar_0 - 1 >= 0 /\ ar_1 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0, ar_0)) [ ar_0 >= 1 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 2.44/1.40 2.44/1.40 (Comp: 1, Cost: 1) koat_start(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) [ 0 <= 0 ] 2.44/1.40 2.44/1.40 start location: koat_start 2.44/1.40 2.44/1.40 leaf cost: 0 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 Complexity upper bound 2*ar_0 + 9 2.44/1.40 2.44/1.40 2.44/1.40 2.44/1.40 Time: 0.252 sec (SMT: 0.227 sec) 2.44/1.40 2.44/1.40 2.44/1.40 ---------------------------------------- 2.44/1.40 2.44/1.40 (2) 2.44/1.40 BOUNDS(1, n^1) 2.44/1.42 EOF