2.39/1.31 WORST_CASE(?, O(n^1)) 2.39/1.32 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.39/1.32 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.39/1.32 2.39/1.32 2.39/1.32 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.39/1.32 2.39/1.32 (0) CpxIntTrs 2.39/1.32 (1) Koat Proof [FINISHED, 158 ms] 2.39/1.32 (2) BOUNDS(1, n^1) 2.39/1.32 2.39/1.32 2.39/1.32 ---------------------------------------- 2.39/1.32 2.39/1.32 (0) 2.39/1.32 Obligation: 2.39/1.32 Complexity Int TRS consisting of the following rules: 2.39/1.32 eval_foo_start(v_.0, v_.1, v_i, v_m, v_n, v_x) -> Com_1(eval_foo_bb0_in(v_.0, v_.1, v_i, v_m, v_n, v_x)) :|: TRUE 2.39/1.32 eval_foo_bb0_in(v_.0, v_.1, v_i, v_m, v_n, v_x) -> Com_1(eval_foo_bb1_in(v_x, v_.1, v_i, v_m, v_n, v_x)) :|: TRUE 2.39/1.32 eval_foo_bb1_in(v_.0, v_.1, v_i, v_m, v_n, v_x) -> Com_1(eval_foo_bb2_in(v_.0, v_.1, v_i, v_m, v_n, v_x)) :|: v_.0 < v_n 2.39/1.32 eval_foo_bb1_in(v_.0, v_.1, v_i, v_m, v_n, v_x) -> Com_1(eval_foo_bb3_in(v_.0, v_.0, v_i, v_m, v_n, v_x)) :|: v_.0 >= v_n 2.39/1.32 eval_foo_bb2_in(v_.0, v_.1, v_i, v_m, v_n, v_x) -> Com_1(eval_foo_bb1_in(v_.0 + 1, v_.1, v_i, v_m, v_n, v_x)) :|: TRUE 2.39/1.32 eval_foo_bb3_in(v_.0, v_.1, v_i, v_m, v_n, v_x) -> Com_1(eval_foo_bb4_in(v_.0, v_.1, v_i, v_m, v_n, v_x)) :|: v_.1 < v_m 2.39/1.32 eval_foo_bb3_in(v_.0, v_.1, v_i, v_m, v_n, v_x) -> Com_1(eval_foo_bb5_in(v_.0, v_.1, v_i, v_m, v_n, v_x)) :|: v_.1 >= v_m 2.39/1.32 eval_foo_bb4_in(v_.0, v_.1, v_i, v_m, v_n, v_x) -> Com_1(eval_foo_bb3_in(v_.0, v_.1 + 1, v_i, v_m, v_n, v_x)) :|: TRUE 2.39/1.32 eval_foo_bb5_in(v_.0, v_.1, v_i, v_m, v_n, v_x) -> Com_1(eval_foo_stop(v_.0, v_.1, v_i, v_m, v_n, v_x)) :|: TRUE 2.39/1.32 2.39/1.32 The start-symbols are:[eval_foo_start_6] 2.39/1.32 2.39/1.32 2.39/1.32 ---------------------------------------- 2.39/1.32 2.39/1.32 (1) Koat Proof (FINISHED) 2.39/1.32 YES(?, 2*ar_1 + 4*ar_2 + 2*ar_4 + 11) 2.39/1.32 2.39/1.32 2.39/1.32 2.39/1.32 Initial complexity problem: 2.39/1.32 2.39/1.32 1: T: 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_0, ar_4)) [ ar_0 >= ar_2 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_3 + 1 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_4 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3 + 1, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.39/1.32 2.39/1.32 start location: koat_start 2.39/1.32 2.39/1.32 leaf cost: 0 2.39/1.32 2.39/1.32 2.39/1.32 2.39/1.32 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.39/1.32 2.39/1.32 2: T: 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_0, ar_4)) [ ar_0 >= ar_2 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_3 + 1 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_4 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3 + 1, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.39/1.32 2.39/1.32 start location: koat_start 2.39/1.32 2.39/1.32 leaf cost: 0 2.39/1.32 2.39/1.32 2.39/1.32 2.39/1.32 A polynomial rank function with 2.39/1.32 2.39/1.32 Pol(evalfoostart) = 3 2.39/1.32 2.39/1.32 Pol(evalfoobb0in) = 3 2.39/1.32 2.39/1.32 Pol(evalfoobb1in) = 3 2.39/1.32 2.39/1.32 Pol(evalfoobb2in) = 3 2.39/1.32 2.39/1.32 Pol(evalfoobb3in) = 2 2.39/1.32 2.39/1.32 Pol(evalfoobb4in) = 2 2.39/1.32 2.39/1.32 Pol(evalfoobb5in) = 1 2.39/1.32 2.39/1.32 Pol(evalfoostop) = 0 2.39/1.32 2.39/1.32 Pol(koat_start) = 3 2.39/1.32 2.39/1.32 orients all transitions weakly and the transitions 2.39/1.32 2.39/1.32 evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_4 ] 2.39/1.32 2.39/1.32 evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_0, ar_4)) [ ar_0 >= ar_2 ] 2.39/1.32 2.39/1.32 strictly and produces the following problem: 2.39/1.32 2.39/1.32 3: T: 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_0, ar_4)) [ ar_0 >= ar_2 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_3 + 1 ] 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_4 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3 + 1, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.39/1.32 2.39/1.32 start location: koat_start 2.39/1.32 2.39/1.32 leaf cost: 0 2.39/1.32 2.39/1.32 2.39/1.32 2.39/1.32 A polynomial rank function with 2.39/1.32 2.39/1.32 Pol(evalfoostart) = -V_2 + V_3 2.39/1.32 2.39/1.32 Pol(evalfoobb0in) = -V_2 + V_3 2.39/1.32 2.39/1.32 Pol(evalfoobb1in) = -V_1 + V_3 2.39/1.32 2.39/1.32 Pol(evalfoobb2in) = -V_1 + V_3 - 1 2.39/1.32 2.39/1.32 Pol(evalfoobb3in) = V_3 - V_4 2.39/1.32 2.39/1.32 Pol(evalfoobb4in) = V_3 - V_4 - 1 2.39/1.32 2.39/1.32 Pol(evalfoobb5in) = V_3 - V_4 2.39/1.32 2.39/1.32 Pol(evalfoostop) = V_3 - V_4 2.39/1.32 2.39/1.32 Pol(koat_start) = -V_2 + V_3 2.39/1.32 2.39/1.32 orients all transitions weakly and the transition 2.39/1.32 2.39/1.32 evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.39/1.32 2.39/1.32 strictly and produces the following problem: 2.39/1.32 2.39/1.32 4: T: 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ar_1 + ar_2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_0, ar_4)) [ ar_0 >= ar_2 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_3 + 1 ] 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_4 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3 + 1, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.39/1.32 2.39/1.32 start location: koat_start 2.39/1.32 2.39/1.32 leaf cost: 0 2.39/1.32 2.39/1.32 2.39/1.32 2.39/1.32 Repeatedly propagating knowledge in problem 4 produces the following problem: 2.39/1.32 2.39/1.32 5: T: 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ar_1 + ar_2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_0, ar_4)) [ ar_0 >= ar_2 ] 2.39/1.32 2.39/1.32 (Comp: ar_1 + ar_2, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_3 + 1 ] 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_4 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3 + 1, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.39/1.32 2.39/1.32 start location: koat_start 2.39/1.32 2.39/1.32 leaf cost: 0 2.39/1.32 2.39/1.32 2.39/1.32 2.39/1.32 A polynomial rank function with 2.39/1.32 2.39/1.32 Pol(evalfoostart) = -V_3 + V_5 2.39/1.32 2.39/1.32 Pol(evalfoobb0in) = -V_3 + V_5 2.39/1.32 2.39/1.32 Pol(evalfoobb1in) = -V_3 + V_5 2.39/1.32 2.39/1.32 Pol(evalfoobb2in) = -V_3 + V_5 2.39/1.32 2.39/1.32 Pol(evalfoobb3in) = -V_4 + V_5 2.39/1.32 2.39/1.32 Pol(evalfoobb4in) = -V_4 + V_5 - 1 2.39/1.32 2.39/1.32 Pol(evalfoobb5in) = -V_4 + V_5 2.39/1.32 2.39/1.32 Pol(evalfoostop) = -V_4 + V_5 2.39/1.32 2.39/1.32 Pol(koat_start) = -V_3 + V_5 2.39/1.32 2.39/1.32 orients all transitions weakly and the transition 2.39/1.32 2.39/1.32 evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_3 + 1 ] 2.39/1.32 2.39/1.32 strictly and produces the following problem: 2.39/1.32 2.39/1.32 6: T: 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ar_1 + ar_2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_0, ar_4)) [ ar_0 >= ar_2 ] 2.39/1.32 2.39/1.32 (Comp: ar_1 + ar_2, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ar_2 + ar_4, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_3 + 1 ] 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_4 ] 2.39/1.32 2.39/1.32 (Comp: ?, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3 + 1, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.39/1.32 2.39/1.32 start location: koat_start 2.39/1.32 2.39/1.32 leaf cost: 0 2.39/1.32 2.39/1.32 2.39/1.32 2.39/1.32 Repeatedly propagating knowledge in problem 6 produces the following problem: 2.39/1.32 2.39/1.32 7: T: 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ar_1 + ar_2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_2 >= ar_0 + 1 ] 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_0, ar_4)) [ ar_0 >= ar_2 ] 2.39/1.32 2.39/1.32 (Comp: ar_1 + ar_2, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: ar_2 + ar_4, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= ar_3 + 1 ] 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_4 ] 2.39/1.32 2.39/1.32 (Comp: ar_2 + ar_4, Cost: 1) evalfoobb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3 + 1, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 3, Cost: 1) evalfoobb5in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4)) 2.39/1.32 2.39/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 2.39/1.32 2.39/1.32 start location: koat_start 2.39/1.32 2.39/1.32 leaf cost: 0 2.39/1.32 2.39/1.32 2.39/1.32 2.39/1.32 Complexity upper bound 2*ar_1 + 4*ar_2 + 2*ar_4 + 11 2.39/1.32 2.39/1.32 2.39/1.32 2.39/1.32 Time: 0.114 sec (SMT: 0.096 sec) 2.39/1.32 2.39/1.32 2.39/1.32 ---------------------------------------- 2.39/1.32 2.39/1.32 (2) 2.39/1.32 BOUNDS(1, n^1) 2.39/1.33 EOF