2.15/1.24 WORST_CASE(?, O(n^1)) 2.22/1.25 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.22/1.25 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.22/1.25 2.22/1.25 2.22/1.25 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.22/1.25 2.22/1.25 (0) CpxIntTrs 2.22/1.25 (1) Koat Proof [FINISHED, 72 ms] 2.22/1.25 (2) BOUNDS(1, n^1) 2.22/1.25 2.22/1.25 2.22/1.25 ---------------------------------------- 2.22/1.25 2.22/1.25 (0) 2.22/1.25 Obligation: 2.22/1.25 Complexity Int TRS consisting of the following rules: 2.22/1.25 eval_foo_start(v_.0, v_bound, v_i, v_sum) -> Com_1(eval_foo_bb0_in(v_.0, v_bound, v_i, v_sum)) :|: TRUE 2.22/1.25 eval_foo_bb0_in(v_.0, v_bound, v_i, v_sum) -> Com_1(eval_foo_bb1_in(0, v_bound, v_i, v_sum)) :|: TRUE 2.22/1.25 eval_foo_bb1_in(v_.0, v_bound, v_i, v_sum) -> Com_1(eval_foo_bb2_in(v_.0, v_bound, v_i, v_sum)) :|: v_.0 < v_bound 2.22/1.25 eval_foo_bb1_in(v_.0, v_bound, v_i, v_sum) -> Com_1(eval_foo_bb3_in(v_.0, v_bound, v_i, v_sum)) :|: v_.0 >= v_bound 2.22/1.25 eval_foo_bb2_in(v_.0, v_bound, v_i, v_sum) -> Com_1(eval_foo_bb1_in(v_.0 + 1, v_bound, v_i, v_sum)) :|: TRUE 2.22/1.25 eval_foo_bb3_in(v_.0, v_bound, v_i, v_sum) -> Com_1(eval_foo_stop(v_.0, v_bound, v_i, v_sum)) :|: TRUE 2.22/1.25 2.22/1.25 The start-symbols are:[eval_foo_start_4] 2.22/1.25 2.22/1.25 2.22/1.25 ---------------------------------------- 2.22/1.25 2.22/1.25 (1) Koat Proof (FINISHED) 2.22/1.25 YES(?, 2*ar_1 + 6) 2.22/1.25 2.22/1.25 2.22/1.25 2.22/1.25 Initial complexity problem: 2.22/1.25 2.22/1.25 1: T: 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1)) 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.22/1.25 2.22/1.25 start location: koat_start 2.22/1.25 2.22/1.25 leaf cost: 0 2.22/1.25 2.22/1.25 2.22/1.25 2.22/1.25 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.22/1.25 2.22/1.25 2: T: 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1)) 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.22/1.25 2.22/1.25 start location: koat_start 2.22/1.25 2.22/1.25 leaf cost: 0 2.22/1.25 2.22/1.25 2.22/1.25 2.22/1.25 A polynomial rank function with 2.22/1.25 2.22/1.25 Pol(evalfoostart) = 2 2.22/1.25 2.22/1.25 Pol(evalfoobb0in) = 2 2.22/1.25 2.22/1.25 Pol(evalfoobb1in) = 2 2.22/1.25 2.22/1.25 Pol(evalfoobb2in) = 2 2.22/1.25 2.22/1.25 Pol(evalfoobb3in) = 1 2.22/1.25 2.22/1.25 Pol(evalfoostop) = 0 2.22/1.25 2.22/1.25 Pol(koat_start) = 2 2.22/1.25 2.22/1.25 orients all transitions weakly and the transitions 2.22/1.25 2.22/1.25 evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.22/1.25 2.22/1.25 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 2.22/1.25 2.22/1.25 strictly and produces the following problem: 2.22/1.25 2.22/1.25 3: T: 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 2.22/1.25 2.22/1.25 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.22/1.25 2.22/1.25 start location: koat_start 2.22/1.25 2.22/1.25 leaf cost: 0 2.22/1.25 2.22/1.25 2.22/1.25 2.22/1.25 A polynomial rank function with 2.22/1.25 2.22/1.25 Pol(evalfoostart) = V_2 2.22/1.25 2.22/1.25 Pol(evalfoobb0in) = V_2 2.22/1.25 2.22/1.25 Pol(evalfoobb1in) = -V_1 + V_2 2.22/1.25 2.22/1.25 Pol(evalfoobb2in) = -V_1 + V_2 - 1 2.22/1.25 2.22/1.25 Pol(evalfoobb3in) = -V_1 + V_2 2.22/1.25 2.22/1.25 Pol(evalfoostop) = -V_1 + V_2 2.22/1.25 2.22/1.25 Pol(koat_start) = V_2 2.22/1.25 2.22/1.25 orients all transitions weakly and the transition 2.22/1.25 2.22/1.25 evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 2.22/1.25 2.22/1.25 strictly and produces the following problem: 2.22/1.25 2.22/1.25 4: T: 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: ar_1, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 2.22/1.25 2.22/1.25 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 2.22/1.25 2.22/1.25 (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.22/1.25 2.22/1.25 start location: koat_start 2.22/1.25 2.22/1.25 leaf cost: 0 2.22/1.25 2.22/1.25 2.22/1.25 2.22/1.25 Repeatedly propagating knowledge in problem 4 produces the following problem: 2.22/1.25 2.22/1.25 5: T: 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1) -> Com_1(evalfoobb0in(ar_0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1) -> Com_1(evalfoobb1in(0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: ar_1, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 2.22/1.25 2.22/1.25 (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1) -> Com_1(evalfoobb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 2.22/1.25 2.22/1.25 (Comp: ar_1, Cost: 1) evalfoobb2in(ar_0, ar_1) -> Com_1(evalfoobb1in(ar_0 + 1, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1) -> Com_1(evalfoostop(ar_0, ar_1)) 2.22/1.25 2.22/1.25 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalfoostart(ar_0, ar_1)) [ 0 <= 0 ] 2.22/1.25 2.22/1.25 start location: koat_start 2.22/1.25 2.22/1.25 leaf cost: 0 2.22/1.25 2.22/1.25 2.22/1.25 2.22/1.25 Complexity upper bound 2*ar_1 + 6 2.22/1.25 2.22/1.25 2.22/1.25 2.22/1.25 Time: 0.040 sec (SMT: 0.036 sec) 2.22/1.25 2.22/1.25 2.22/1.25 ---------------------------------------- 2.22/1.25 2.22/1.25 (2) 2.22/1.25 BOUNDS(1, n^1) 2.24/1.26 EOF