2.18/1.39 WORST_CASE(?, O(n^1)) 2.18/1.40 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.18/1.40 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.18/1.40 2.18/1.40 2.18/1.40 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.18/1.40 2.18/1.40 (0) CpxIntTrs 2.18/1.40 (1) Koat Proof [FINISHED, 173 ms] 2.18/1.40 (2) BOUNDS(1, n^1) 2.18/1.40 2.18/1.40 2.18/1.40 ---------------------------------------- 2.18/1.40 2.18/1.40 (0) 2.18/1.40 Obligation: 2.18/1.40 Complexity Int TRS consisting of the following rules: 2.18/1.40 eval_speedSingleSingle_start(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_bb0_in(v_n, v_x.0)) :|: TRUE 2.18/1.40 eval_speedSingleSingle_bb0_in(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_bb1_in(v_n, 0)) :|: TRUE 2.18/1.40 eval_speedSingleSingle_bb1_in(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_bb2_in(v_n, v_x.0)) :|: v_x.0 < v_n 2.18/1.40 eval_speedSingleSingle_bb1_in(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_bb3_in(v_n, v_x.0)) :|: v_x.0 >= v_n 2.18/1.40 eval_speedSingleSingle_bb2_in(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_0(v_n, v_x.0)) :|: TRUE 2.18/1.40 eval_speedSingleSingle_0(v_n, v_x.0) -> Com_2(eval_nondet_start(v_n, v_x.0), eval_speedSingleSingle_1(v_n, v_x.0)) :|: TRUE 2.18/1.40 eval_speedSingleSingle_1(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_bb1_in(v_n, v_x.0 + 1)) :|: TRUE 2.18/1.40 eval_speedSingleSingle_bb3_in(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_stop(v_n, v_x.0)) :|: TRUE 2.18/1.40 2.18/1.40 The start-symbols are:[eval_speedSingleSingle_start_2] 2.18/1.40 2.18/1.40 2.18/1.40 ---------------------------------------- 2.18/1.40 2.18/1.40 (1) Koat Proof (FINISHED) 2.18/1.40 YES(?, 16*ar_1 + 6) 2.18/1.40 2.18/1.40 2.18/1.40 2.18/1.40 Initial complexity problem: 2.18/1.40 2.18/1.40 1: T: 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] 2.18/1.40 2.18/1.40 start location: koat_start 2.18/1.40 2.18/1.40 leaf cost: 0 2.18/1.40 2.18/1.40 2.18/1.40 2.18/1.40 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.18/1.40 2.18/1.40 2: T: 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] 2.18/1.40 2.18/1.40 start location: koat_start 2.18/1.40 2.18/1.40 leaf cost: 0 2.18/1.40 2.18/1.40 2.18/1.40 2.18/1.40 A polynomial rank function with 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglestart) = 2 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglebb0in) = 2 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglebb1in) = 2 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglebb2in) = 2 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglebb3in) = 1 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSingle0) = 2 2.18/1.40 2.18/1.40 Pol(evalnondetstart) = 0 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSingle1) = 2 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglestop) = 0 2.18/1.40 2.18/1.40 Pol(koat_start) = 2 2.18/1.40 2.18/1.40 orients all transitions weakly and the transitions 2.18/1.40 2.18/1.40 evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) 2.18/1.40 2.18/1.40 evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 2.18/1.40 2.18/1.40 strictly and produces the following problem: 2.18/1.40 2.18/1.40 3: T: 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 2.18/1.40 2.18/1.40 (Comp: 2, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) 2.18/1.40 2.18/1.40 (Comp: 2, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] 2.18/1.40 2.18/1.40 start location: koat_start 2.18/1.40 2.18/1.40 leaf cost: 0 2.18/1.40 2.18/1.40 2.18/1.40 2.18/1.40 Applied AI with 'oct' on problem 3 to obtain the following invariants: 2.18/1.40 2.18/1.40 For symbol evalspeedSingleSingle0: X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 2.18/1.40 2.18/1.40 For symbol evalspeedSingleSingle1: X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 2.18/1.40 2.18/1.40 For symbol evalspeedSingleSinglebb1in: X_1 >= 0 2.18/1.40 2.18/1.40 For symbol evalspeedSingleSinglebb2in: X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 2.18/1.40 2.18/1.40 For symbol evalspeedSingleSinglebb3in: X_1 - X_2 >= 0 /\ X_1 >= 0 2.18/1.40 2.18/1.40 2.18/1.40 2.18/1.40 2.18/1.40 2.18/1.40 This yielded the following problem: 2.18/1.40 2.18/1.40 4: T: 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] 2.18/1.40 2.18/1.40 (Comp: 2, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 (Comp: 2, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= 0 /\ ar_0 >= ar_1 ] 2.18/1.40 2.18/1.40 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_0 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) 2.18/1.40 2.18/1.40 start location: koat_start 2.18/1.40 2.18/1.40 leaf cost: 0 2.18/1.40 2.18/1.40 2.18/1.40 2.18/1.40 A polynomial rank function with 2.18/1.40 2.18/1.40 Pol(koat_start) = 4*V_2 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglestart) = 4*V_2 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglebb3in) = -4*V_1 + 4*V_2 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglestop) = -4*V_1 + 4*V_2 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSingle1) = -4*V_1 + 4*V_2 - 3 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglebb1in) = -4*V_1 + 4*V_2 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSingle0) = -4*V_1 + 4*V_2 - 2 2.18/1.40 2.18/1.40 Pol(evalnondetstart) = -4*V_1 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglebb2in) = -4*V_1 + 4*V_2 - 1 2.18/1.40 2.18/1.40 Pol(evalspeedSingleSinglebb0in) = 4*V_2 2.18/1.40 2.18/1.40 orients all transitions weakly and the transitions 2.18/1.40 2.18/1.40 evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_0 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.18/1.40 2.18/1.40 evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 strictly and produces the following problem: 2.18/1.40 2.18/1.40 5: T: 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] 2.18/1.40 2.18/1.40 (Comp: 2, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 (Comp: 4*ar_1, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 (Comp: 4*ar_1, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 (Comp: 4*ar_1, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] 2.18/1.40 2.18/1.40 (Comp: 2, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= 0 /\ ar_0 >= ar_1 ] 2.18/1.40 2.18/1.40 (Comp: 4*ar_1, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_0 >= 0 /\ ar_1 >= ar_0 + 1 ] 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) 2.18/1.40 2.18/1.40 (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) 2.18/1.40 2.18/1.40 start location: koat_start 2.18/1.40 2.18/1.40 leaf cost: 0 2.18/1.40 2.18/1.40 2.18/1.40 2.18/1.40 Complexity upper bound 16*ar_1 + 6 2.18/1.40 2.18/1.40 2.18/1.40 2.18/1.40 Time: 0.141 sec (SMT: 0.126 sec) 2.18/1.40 2.18/1.40 2.18/1.40 ---------------------------------------- 2.18/1.40 2.18/1.40 (2) 2.18/1.40 BOUNDS(1, n^1) 2.22/1.42 EOF