2.27/1.37 WORST_CASE(?, O(n^1)) 2.27/1.38 proof of /export/starexec/sandbox2/output/output_files/bench.koat 2.27/1.38 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.27/1.38 2.27/1.38 2.27/1.38 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). 2.27/1.38 2.27/1.38 (0) CpxIntTrs 2.27/1.38 (1) Koat Proof [FINISHED, 76 ms] 2.27/1.38 (2) BOUNDS(1, n^1) 2.27/1.38 2.27/1.38 2.27/1.38 ---------------------------------------- 2.27/1.38 2.27/1.38 (0) 2.27/1.38 Obligation: 2.27/1.38 Complexity Int TRS consisting of the following rules: 2.27/1.38 eval_exmini_start(v_.0, v_.01, v_.02, v_i, v_j, v_k) -> Com_1(eval_exmini_bb0_in(v_.0, v_.01, v_.02, v_i, v_j, v_k)) :|: TRUE 2.27/1.38 eval_exmini_bb0_in(v_.0, v_.01, v_.02, v_i, v_j, v_k) -> Com_1(eval_exmini_bb1_in(v_i, v_j, v_k, v_i, v_j, v_k)) :|: TRUE 2.27/1.38 eval_exmini_bb1_in(v_.0, v_.01, v_.02, v_i, v_j, v_k) -> Com_1(eval_exmini_bb2_in(v_.0, v_.01, v_.02, v_i, v_j, v_k)) :|: v_.0 <= 100 && v_.01 <= v_.02 2.27/1.38 eval_exmini_bb1_in(v_.0, v_.01, v_.02, v_i, v_j, v_k) -> Com_1(eval_exmini_bb3_in(v_.0, v_.01, v_.02, v_i, v_j, v_k)) :|: v_.0 > 100 2.27/1.38 eval_exmini_bb1_in(v_.0, v_.01, v_.02, v_i, v_j, v_k) -> Com_1(eval_exmini_bb3_in(v_.0, v_.01, v_.02, v_i, v_j, v_k)) :|: v_.01 > v_.02 2.27/1.39 eval_exmini_bb2_in(v_.0, v_.01, v_.02, v_i, v_j, v_k) -> Com_1(eval_exmini_bb1_in(v_.01, v_.0 + 1, v_.02 - 1, v_i, v_j, v_k)) :|: TRUE 2.27/1.39 eval_exmini_bb3_in(v_.0, v_.01, v_.02, v_i, v_j, v_k) -> Com_1(eval_exmini_stop(v_.0, v_.01, v_.02, v_i, v_j, v_k)) :|: TRUE 2.27/1.39 2.27/1.39 The start-symbols are:[eval_exmini_start_6] 2.27/1.39 2.27/1.39 2.27/1.39 ---------------------------------------- 2.27/1.39 2.27/1.39 (1) Koat Proof (FINISHED) 2.27/1.39 YES(?, 2*ar_1 + 2*ar_3 + 2*ar_5 + 210) 2.27/1.39 2.27/1.39 2.27/1.39 2.27/1.39 Initial complexity problem: 2.27/1.39 2.27/1.39 1: T: 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexministart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb1in(ar_1, ar_1, ar_3, ar_3, ar_5, ar_5)) 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb1in(ar_2, ar_1, ar_0 + 1, ar_3, ar_4 - 1, ar_5)) 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] 2.27/1.39 2.27/1.39 start location: koat_start 2.27/1.39 2.27/1.39 leaf cost: 0 2.27/1.39 2.27/1.39 2.27/1.39 2.27/1.39 Repeatedly propagating knowledge in problem 1 produces the following problem: 2.27/1.39 2.27/1.39 2: T: 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 1) evalexministart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 1) evalexminibb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb1in(ar_1, ar_1, ar_3, ar_3, ar_5, ar_5)) 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb1in(ar_2, ar_1, ar_0 + 1, ar_3, ar_4 - 1, ar_5)) 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] 2.27/1.39 2.27/1.39 start location: koat_start 2.27/1.39 2.27/1.39 leaf cost: 0 2.27/1.39 2.27/1.39 2.27/1.39 2.27/1.39 A polynomial rank function with 2.27/1.39 2.27/1.39 Pol(evalexministart) = 2 2.27/1.39 2.27/1.39 Pol(evalexminibb0in) = 2 2.27/1.39 2.27/1.39 Pol(evalexminibb1in) = 2 2.27/1.39 2.27/1.39 Pol(evalexminibb2in) = 2 2.27/1.39 2.27/1.39 Pol(evalexminibb3in) = 1 2.27/1.39 2.27/1.39 Pol(evalexministop) = 0 2.27/1.39 2.27/1.39 Pol(koat_start) = 2 2.27/1.39 2.27/1.39 orients all transitions weakly and the transitions 2.27/1.39 2.27/1.39 evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] 2.27/1.39 2.27/1.39 evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] 2.27/1.39 2.27/1.39 strictly and produces the following problem: 2.27/1.39 2.27/1.39 3: T: 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 1) evalexministart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 1) evalexminibb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb1in(ar_1, ar_1, ar_3, ar_3, ar_5, ar_5)) 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] 2.27/1.39 2.27/1.39 (Comp: 2, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] 2.27/1.39 2.27/1.39 (Comp: 2, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb1in(ar_2, ar_1, ar_0 + 1, ar_3, ar_4 - 1, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 2, Cost: 1) evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] 2.27/1.39 2.27/1.39 start location: koat_start 2.27/1.39 2.27/1.39 leaf cost: 0 2.27/1.39 2.27/1.39 2.27/1.39 2.27/1.39 A polynomial rank function with 2.27/1.39 2.27/1.39 Pol(evalexministart) = -V_2 - V_4 + V_6 + 101 2.27/1.39 2.27/1.39 Pol(evalexminibb0in) = -V_2 - V_4 + V_6 + 101 2.27/1.39 2.27/1.39 Pol(evalexminibb1in) = -V_1 - V_3 + V_5 + 101 2.27/1.39 2.27/1.39 Pol(evalexminibb2in) = -V_1 - V_3 + V_5 + 99 2.27/1.39 2.27/1.39 Pol(evalexminibb3in) = -V_1 - V_3 + V_5 2.27/1.39 2.27/1.39 Pol(evalexministop) = -V_1 - V_3 + V_5 2.27/1.39 2.27/1.39 Pol(koat_start) = -V_2 - V_4 + V_6 + 101 2.27/1.39 2.27/1.39 orients all transitions weakly and the transition 2.27/1.39 2.27/1.39 evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] 2.27/1.39 2.27/1.39 strictly and produces the following problem: 2.27/1.39 2.27/1.39 4: T: 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 1) evalexministart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 1) evalexminibb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb1in(ar_1, ar_1, ar_3, ar_3, ar_5, ar_5)) 2.27/1.39 2.27/1.39 (Comp: ar_1 + ar_3 + ar_5 + 101, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] 2.27/1.39 2.27/1.39 (Comp: 2, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] 2.27/1.39 2.27/1.39 (Comp: 2, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] 2.27/1.39 2.27/1.39 (Comp: ?, Cost: 1) evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb1in(ar_2, ar_1, ar_0 + 1, ar_3, ar_4 - 1, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 2, Cost: 1) evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] 2.27/1.39 2.27/1.39 start location: koat_start 2.27/1.39 2.27/1.39 leaf cost: 0 2.27/1.39 2.27/1.39 2.27/1.39 2.27/1.39 Repeatedly propagating knowledge in problem 4 produces the following problem: 2.27/1.39 2.27/1.39 5: T: 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 1) evalexministart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 1) evalexminibb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb1in(ar_1, ar_1, ar_3, ar_3, ar_5, ar_5)) 2.27/1.39 2.27/1.39 (Comp: ar_1 + ar_3 + ar_5 + 101, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] 2.27/1.39 2.27/1.39 (Comp: 2, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] 2.27/1.39 2.27/1.39 (Comp: 2, Cost: 1) evalexminibb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] 2.27/1.39 2.27/1.39 (Comp: ar_1 + ar_3 + ar_5 + 101, Cost: 1) evalexminibb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexminibb1in(ar_2, ar_1, ar_0 + 1, ar_3, ar_4 - 1, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 2, Cost: 1) evalexminibb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) 2.27/1.39 2.27/1.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalexministart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] 2.27/1.39 2.27/1.39 start location: koat_start 2.27/1.39 2.27/1.39 leaf cost: 0 2.27/1.39 2.27/1.39 2.27/1.39 2.27/1.39 Complexity upper bound 2*ar_1 + 2*ar_3 + 2*ar_5 + 210 2.27/1.39 2.27/1.39 2.27/1.39 2.27/1.39 Time: 0.093 sec (SMT: 0.079 sec) 2.27/1.39 2.27/1.39 2.27/1.39 ---------------------------------------- 2.27/1.39 2.27/1.39 (2) 2.27/1.39 BOUNDS(1, n^1) 2.41/1.42 EOF