2.09/1.31 WORST_CASE(?, O(n^2)) 2.09/1.32 proof of /export/starexec/sandbox/output/output_files/bench.koat 2.09/1.32 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.09/1.32 2.09/1.32 2.09/1.32 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^2). 2.09/1.32 2.09/1.32 (0) CpxIntTrs 2.09/1.32 (1) Koat Proof [FINISHED, 79 ms] 2.09/1.32 (2) BOUNDS(1, n^2) 2.09/1.32 2.09/1.32 2.09/1.32 ---------------------------------------- 2.09/1.32 2.09/1.32 (0) 2.09/1.32 Obligation: 2.09/1.32 Complexity Int TRS consisting of the following rules: 2.09/1.32 eval_ax_start(v_.0, v_.01, v_i, v_j, v_n) -> Com_1(eval_ax_bb0_in(v_.0, v_.01, v_i, v_j, v_n)) :|: TRUE 2.09/1.32 eval_ax_bb0_in(v_.0, v_.01, v_i, v_j, v_n) -> Com_1(eval_ax_bb1_in(0, v_.01, v_i, v_j, v_n)) :|: TRUE 2.09/1.32 eval_ax_bb1_in(v_.0, v_.01, v_i, v_j, v_n) -> Com_1(eval_ax_bb2_in(v_.0, 0, v_i, v_j, v_n)) :|: TRUE 2.09/1.32 eval_ax_bb2_in(v_.0, v_.01, v_i, v_j, v_n) -> Com_1(eval_ax_bb3_in(v_.0, v_.01, v_i, v_j, v_n)) :|: v_.01 < v_n - 1 2.09/1.32 eval_ax_bb2_in(v_.0, v_.01, v_i, v_j, v_n) -> Com_1(eval_ax_bb4_in(v_.0, v_.01, v_i, v_j, v_n)) :|: v_.01 >= v_n - 1 2.09/1.32 eval_ax_bb3_in(v_.0, v_.01, v_i, v_j, v_n) -> Com_1(eval_ax_bb2_in(v_.0, v_.01 + 1, v_i, v_j, v_n)) :|: TRUE 2.09/1.32 eval_ax_bb4_in(v_.0, v_.01, v_i, v_j, v_n) -> Com_1(eval_ax_bb1_in(v_.0 + 1, v_.01, v_i, v_j, v_n)) :|: v_.01 >= v_n - 1 && v_.0 + 1 < v_n - 1 2.09/1.32 eval_ax_bb4_in(v_.0, v_.01, v_i, v_j, v_n) -> Com_1(eval_ax_.critedge_in(v_.0, v_.01, v_i, v_j, v_n)) :|: v_.01 < v_n - 1 2.09/1.32 eval_ax_bb4_in(v_.0, v_.01, v_i, v_j, v_n) -> Com_1(eval_ax_.critedge_in(v_.0, v_.01, v_i, v_j, v_n)) :|: v_.0 + 1 >= v_n - 1 2.09/1.32 eval_ax_.critedge_in(v_.0, v_.01, v_i, v_j, v_n) -> Com_1(eval_ax_stop(v_.0, v_.01, v_i, v_j, v_n)) :|: TRUE 2.09/1.32 2.09/1.32 The start-symbols are:[eval_ax_start_5] 2.09/1.32 2.09/1.32 2.09/1.32 ---------------------------------------- 2.09/1.32 2.09/1.32 (1) Koat Proof (FINISHED) 2.09/1.32 YES(?, 7*ar_2 + 2*ar_2^2 + 10) 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 Initial complexity problem: 2.09/1.32 2.09/1.32 1: T: 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.09/1.32 2.09/1.32 start location: koat_start 2.09/1.32 2.09/1.32 leaf cost: 0 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 Testing for reachability in the complexity graph removes the following transition from problem 1: 2.09/1.32 2.09/1.32 evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 We thus obtain the following problem: 2.09/1.32 2.09/1.32 2: T: 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.09/1.32 2.09/1.32 start location: koat_start 2.09/1.32 2.09/1.32 leaf cost: 0 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 Repeatedly propagating knowledge in problem 2 produces the following problem: 2.09/1.32 2.09/1.32 3: T: 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.09/1.32 2.09/1.32 start location: koat_start 2.09/1.32 2.09/1.32 leaf cost: 0 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 A polynomial rank function with 2.09/1.32 2.09/1.32 Pol(evalaxcritedgein) = 1 2.09/1.32 2.09/1.32 Pol(evalaxstop) = 0 2.09/1.32 2.09/1.32 Pol(evalaxbb4in) = 2 2.09/1.32 2.09/1.32 Pol(evalaxbb1in) = 2 2.09/1.32 2.09/1.32 Pol(evalaxbb3in) = 2 2.09/1.32 2.09/1.32 Pol(evalaxbb2in) = 2 2.09/1.32 2.09/1.32 Pol(evalaxbb0in) = 2 2.09/1.32 2.09/1.32 Pol(evalaxstart) = 2 2.09/1.32 2.09/1.32 Pol(koat_start) = 2 2.09/1.32 2.09/1.32 orients all transitions weakly and the transitions 2.09/1.32 2.09/1.32 evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 2.09/1.32 2.09/1.32 strictly and produces the following problem: 2.09/1.32 2.09/1.32 4: T: 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.09/1.32 2.09/1.32 start location: koat_start 2.09/1.32 2.09/1.32 leaf cost: 0 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 A polynomial rank function with 2.09/1.32 2.09/1.32 Pol(evalaxcritedgein) = -V_1 + V_3 2.09/1.32 2.09/1.32 Pol(evalaxstop) = -V_1 + V_3 2.09/1.32 2.09/1.32 Pol(evalaxbb4in) = -V_1 + V_3 2.09/1.32 2.09/1.32 Pol(evalaxbb1in) = -V_1 + V_3 2.09/1.32 2.09/1.32 Pol(evalaxbb3in) = -V_1 + V_3 2.09/1.32 2.09/1.32 Pol(evalaxbb2in) = -V_1 + V_3 2.09/1.32 2.09/1.32 Pol(evalaxbb0in) = V_3 2.09/1.32 2.09/1.32 Pol(evalaxstart) = V_3 2.09/1.32 2.09/1.32 Pol(koat_start) = V_3 2.09/1.32 2.09/1.32 orients all transitions weakly and the transition 2.09/1.32 2.09/1.32 evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 2.09/1.32 2.09/1.32 strictly and produces the following problem: 2.09/1.32 2.09/1.32 5: T: 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.09/1.32 2.09/1.32 start location: koat_start 2.09/1.32 2.09/1.32 leaf cost: 0 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 Repeatedly propagating knowledge in problem 5 produces the following problem: 2.09/1.32 2.09/1.32 6: T: 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2 + 1, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.09/1.32 2.09/1.32 start location: koat_start 2.09/1.32 2.09/1.32 leaf cost: 0 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 A polynomial rank function with 2.09/1.32 2.09/1.32 Pol(evalaxbb3in) = 1 2.09/1.32 2.09/1.32 Pol(evalaxbb2in) = 1 2.09/1.32 2.09/1.32 Pol(evalaxbb4in) = 0 2.09/1.32 2.09/1.32 and size complexities 2.09/1.32 2.09/1.32 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 2.09/1.32 2.09/1.32 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 2.09/1.32 2.09/1.32 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2))", 0-0) = ar_0 2.09/1.32 2.09/1.32 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2))", 0-1) = ar_1 2.09/1.32 2.09/1.32 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2))", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2))", 0-0) = 0 2.09/1.32 2.09/1.32 S("evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2))", 0-1) = ar_1 2.09/1.32 2.09/1.32 S("evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2))", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-1) = 0 2.09/1.32 2.09/1.32 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-2) = ar_2 2.09/1.32 2.09/1.32 orients the transitions 2.09/1.32 2.09/1.32 evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 weakly and the transition 2.09/1.32 2.09/1.32 evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 strictly and produces the following problem: 2.09/1.32 2.09/1.32 7: T: 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ar_2 + 1, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2 + 1, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.09/1.32 2.09/1.32 start location: koat_start 2.09/1.32 2.09/1.32 leaf cost: 0 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 A polynomial rank function with 2.09/1.32 2.09/1.32 Pol(evalaxbb3in) = -V_2 + V_3 2.09/1.32 2.09/1.32 Pol(evalaxbb2in) = -V_2 + V_3 + 1 2.09/1.32 2.09/1.32 and size complexities 2.09/1.32 2.09/1.32 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 2.09/1.32 2.09/1.32 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 2.09/1.32 2.09/1.32 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2))", 0-0) = ar_0 2.09/1.32 2.09/1.32 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2))", 0-1) = ar_1 2.09/1.32 2.09/1.32 S("evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2))", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2))", 0-0) = 0 2.09/1.32 2.09/1.32 S("evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2))", 0-1) = ar_1 2.09/1.32 2.09/1.32 S("evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2))", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-1) = 0 2.09/1.32 2.09/1.32 S("evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2))", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ]", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ]", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2))", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\\ ar_2 >= ar_0 + 3 ]", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ]", 0-2) = ar_2 2.09/1.32 2.09/1.32 S("evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-0) = ar_2 2.09/1.32 2.09/1.32 S("evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-1) = ? 2.09/1.32 2.09/1.32 S("evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2))", 0-2) = ar_2 2.09/1.32 2.09/1.32 orients the transitions 2.09/1.32 2.09/1.32 evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 weakly and the transition 2.09/1.32 2.09/1.32 evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 strictly and produces the following problem: 2.09/1.32 2.09/1.32 8: T: 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 2.09/1.32 2.09/1.32 (Comp: ?, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ar_2 + 1, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2^2 + 2*ar_2 + 1, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2 + 1, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.09/1.32 2.09/1.32 start location: koat_start 2.09/1.32 2.09/1.32 leaf cost: 0 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 Repeatedly propagating knowledge in problem 8 produces the following problem: 2.09/1.32 2.09/1.32 9: T: 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxcritedgein(ar_0, ar_1, ar_2) -> Com_1(evalaxstop(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxcritedgein(ar_0, ar_1, ar_2)) [ ar_0 + 2 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2, Cost: 1) evalaxbb4in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(ar_0 + 1, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 /\ ar_2 >= ar_0 + 3 ] 2.09/1.32 2.09/1.32 (Comp: ar_2^2 + 2*ar_2 + 1, Cost: 1) evalaxbb3in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, ar_1 + 1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: ar_2 + 1, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb4in(ar_0, ar_1, ar_2)) [ ar_1 + 1 >= ar_2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2^2 + 2*ar_2 + 1, Cost: 1) evalaxbb2in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb3in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_1 + 2 ] 2.09/1.32 2.09/1.32 (Comp: ar_2 + 1, Cost: 1) evalaxbb1in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb2in(ar_0, 0, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxbb0in(ar_0, ar_1, ar_2) -> Com_1(evalaxbb1in(0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 1) evalaxstart(ar_0, ar_1, ar_2) -> Com_1(evalaxbb0in(ar_0, ar_1, ar_2)) 2.09/1.32 2.09/1.32 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalaxstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 2.09/1.32 2.09/1.32 start location: koat_start 2.09/1.32 2.09/1.32 leaf cost: 0 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 Complexity upper bound 7*ar_2 + 2*ar_2^2 + 10 2.09/1.32 2.09/1.32 2.09/1.32 2.09/1.32 Time: 0.091 sec (SMT: 0.078 sec) 2.09/1.32 2.09/1.32 2.09/1.32 ---------------------------------------- 2.09/1.32 2.09/1.32 (2) 2.09/1.32 BOUNDS(1, n^2) 2.09/1.33 EOF