3.97/1.94 WORST_CASE(Omega(n^2), O(n^2)) 3.97/1.95 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.97/1.95 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.97/1.95 3.97/1.95 3.97/1.95 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). 3.97/1.95 3.97/1.95 (0) CpxIntTrs 3.97/1.95 (1) Koat Proof [FINISHED, 9 ms] 3.97/1.95 (2) BOUNDS(1, n^2) 3.97/1.95 (3) Loat Proof [FINISHED, 324 ms] 3.97/1.95 (4) BOUNDS(n^2, INF) 3.97/1.95 3.97/1.95 3.97/1.95 ---------------------------------------- 3.97/1.95 3.97/1.95 (0) 3.97/1.95 Obligation: 3.97/1.95 Complexity Int TRS consisting of the following rules: 3.97/1.95 eval1(A, B) -> Com_1(eval2(A + 1, 1)) :|: A >= 0 3.97/1.95 eval2(A, B) -> Com_1(eval2(A, B + 1)) :|: A >= 0 && B >= 1 && A >= B 3.97/1.95 eval2(A, B) -> Com_1(eval1(A - 2, B)) :|: A >= 0 && B >= 1 && B >= A + 1 3.97/1.95 start(A, B) -> Com_1(eval1(A, B)) :|: TRUE 3.97/1.95 3.97/1.95 The start-symbols are:[start_2] 3.97/1.95 3.97/1.95 3.97/1.95 ---------------------------------------- 3.97/1.95 3.97/1.95 (1) Koat Proof (FINISHED) 3.97/1.95 YES(?, 128*ar_0 + 6*ar_0^2 + 233) 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Initial complexity problem: 3.97/1.95 3.97/1.95 1: T: 3.97/1.95 3.97/1.95 (Comp: ?, Cost: 1) eval1(ar_0, ar_1) -> Com_1(eval2(ar_0 + 1, 1)) [ ar_0 >= 0 ] 3.97/1.95 3.97/1.95 (Comp: ?, Cost: 1) eval2(ar_0, ar_1) -> Com_1(eval2(ar_0, ar_1 + 1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_0 >= ar_1 ] 3.97/1.95 3.97/1.95 (Comp: ?, Cost: 1) eval2(ar_0, ar_1) -> Com_1(eval1(ar_0 - 2, ar_1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_1 >= ar_0 + 1 ] 3.97/1.95 3.97/1.95 (Comp: ?, Cost: 1) start(ar_0, ar_1) -> Com_1(eval1(ar_0, ar_1)) 3.97/1.95 3.97/1.95 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(start(ar_0, ar_1)) [ 0 <= 0 ] 3.97/1.95 3.97/1.95 start location: koat_start 3.97/1.95 3.97/1.95 leaf cost: 0 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.97/1.95 3.97/1.95 2: T: 3.97/1.95 3.97/1.95 (Comp: ?, Cost: 1) eval1(ar_0, ar_1) -> Com_1(eval2(ar_0 + 1, 1)) [ ar_0 >= 0 ] 3.97/1.95 3.97/1.95 (Comp: ?, Cost: 1) eval2(ar_0, ar_1) -> Com_1(eval2(ar_0, ar_1 + 1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_0 >= ar_1 ] 3.97/1.95 3.97/1.95 (Comp: ?, Cost: 1) eval2(ar_0, ar_1) -> Com_1(eval1(ar_0 - 2, ar_1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_1 >= ar_0 + 1 ] 3.97/1.95 3.97/1.95 (Comp: 1, Cost: 1) start(ar_0, ar_1) -> Com_1(eval1(ar_0, ar_1)) 3.97/1.95 3.97/1.95 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(start(ar_0, ar_1)) [ 0 <= 0 ] 3.97/1.95 3.97/1.95 start location: koat_start 3.97/1.95 3.97/1.95 leaf cost: 0 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 A polynomial rank function with 3.97/1.95 3.97/1.95 Pol(eval1) = 2*V_1 + 4 3.97/1.95 3.97/1.95 Pol(eval2) = 2*V_1 + 1 3.97/1.95 3.97/1.95 Pol(start) = 2*V_1 + 4 3.97/1.95 3.97/1.95 Pol(koat_start) = 2*V_1 + 4 3.97/1.95 3.97/1.95 orients all transitions weakly and the transitions 3.97/1.95 3.97/1.95 eval2(ar_0, ar_1) -> Com_1(eval1(ar_0 - 2, ar_1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_1 >= ar_0 + 1 ] 3.97/1.95 3.97/1.95 eval1(ar_0, ar_1) -> Com_1(eval2(ar_0 + 1, 1)) [ ar_0 >= 0 ] 3.97/1.95 3.97/1.95 strictly and produces the following problem: 3.97/1.95 3.97/1.95 3: T: 3.97/1.95 3.97/1.95 (Comp: 2*ar_0 + 4, Cost: 1) eval1(ar_0, ar_1) -> Com_1(eval2(ar_0 + 1, 1)) [ ar_0 >= 0 ] 3.97/1.95 3.97/1.95 (Comp: ?, Cost: 1) eval2(ar_0, ar_1) -> Com_1(eval2(ar_0, ar_1 + 1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_0 >= ar_1 ] 3.97/1.95 3.97/1.95 (Comp: 2*ar_0 + 4, Cost: 1) eval2(ar_0, ar_1) -> Com_1(eval1(ar_0 - 2, ar_1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_1 >= ar_0 + 1 ] 3.97/1.95 3.97/1.95 (Comp: 1, Cost: 1) start(ar_0, ar_1) -> Com_1(eval1(ar_0, ar_1)) 3.97/1.95 3.97/1.95 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(start(ar_0, ar_1)) [ 0 <= 0 ] 3.97/1.95 3.97/1.95 start location: koat_start 3.97/1.95 3.97/1.95 leaf cost: 0 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 A polynomial rank function with 3.97/1.95 3.97/1.95 Pol(eval2) = V_1 - V_2 + 1 3.97/1.95 3.97/1.95 and size complexities 3.97/1.95 3.97/1.95 S("koat_start(ar_0, ar_1) -> Com_1(start(ar_0, ar_1)) [ 0 <= 0 ]", 0-0) = ar_0 3.97/1.95 3.97/1.95 S("koat_start(ar_0, ar_1) -> Com_1(start(ar_0, ar_1)) [ 0 <= 0 ]", 0-1) = ar_1 3.97/1.95 3.97/1.95 S("start(ar_0, ar_1) -> Com_1(eval1(ar_0, ar_1))", 0-0) = ar_0 3.97/1.95 3.97/1.95 S("start(ar_0, ar_1) -> Com_1(eval1(ar_0, ar_1))", 0-1) = ar_1 3.97/1.95 3.97/1.95 S("eval2(ar_0, ar_1) -> Com_1(eval1(ar_0 - 2, ar_1)) [ ar_0 >= 0 /\\ ar_1 >= 1 /\\ ar_1 >= ar_0 + 1 ]", 0-0) = 3*ar_0 + 54 3.97/1.95 3.97/1.95 S("eval2(ar_0, ar_1) -> Com_1(eval1(ar_0 - 2, ar_1)) [ ar_0 >= 0 /\\ ar_1 >= 1 /\\ ar_1 >= ar_0 + 1 ]", 0-1) = ? 3.97/1.95 3.97/1.95 S("eval2(ar_0, ar_1) -> Com_1(eval2(ar_0, ar_1 + 1)) [ ar_0 >= 0 /\\ ar_1 >= 1 /\\ ar_0 >= ar_1 ]", 0-0) = 3*ar_0 + 54 3.97/1.95 3.97/1.95 S("eval2(ar_0, ar_1) -> Com_1(eval2(ar_0, ar_1 + 1)) [ ar_0 >= 0 /\\ ar_1 >= 1 /\\ ar_0 >= ar_1 ]", 0-1) = ? 3.97/1.95 3.97/1.95 S("eval1(ar_0, ar_1) -> Com_1(eval2(ar_0 + 1, 1)) [ ar_0 >= 0 ]", 0-0) = 3*ar_0 + 54 3.97/1.95 3.97/1.95 S("eval1(ar_0, ar_1) -> Com_1(eval2(ar_0 + 1, 1)) [ ar_0 >= 0 ]", 0-1) = 1 3.97/1.95 3.97/1.95 orients the transitions 3.97/1.95 3.97/1.95 eval2(ar_0, ar_1) -> Com_1(eval2(ar_0, ar_1 + 1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_0 >= ar_1 ] 3.97/1.95 3.97/1.95 weakly and the transition 3.97/1.95 3.97/1.95 eval2(ar_0, ar_1) -> Com_1(eval2(ar_0, ar_1 + 1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_0 >= ar_1 ] 3.97/1.95 3.97/1.95 strictly and produces the following problem: 3.97/1.95 3.97/1.95 4: T: 3.97/1.95 3.97/1.95 (Comp: 2*ar_0 + 4, Cost: 1) eval1(ar_0, ar_1) -> Com_1(eval2(ar_0 + 1, 1)) [ ar_0 >= 0 ] 3.97/1.95 3.97/1.95 (Comp: 6*ar_0^2 + 124*ar_0 + 224, Cost: 1) eval2(ar_0, ar_1) -> Com_1(eval2(ar_0, ar_1 + 1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_0 >= ar_1 ] 3.97/1.95 3.97/1.95 (Comp: 2*ar_0 + 4, Cost: 1) eval2(ar_0, ar_1) -> Com_1(eval1(ar_0 - 2, ar_1)) [ ar_0 >= 0 /\ ar_1 >= 1 /\ ar_1 >= ar_0 + 1 ] 3.97/1.95 3.97/1.95 (Comp: 1, Cost: 1) start(ar_0, ar_1) -> Com_1(eval1(ar_0, ar_1)) 3.97/1.95 3.97/1.95 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(start(ar_0, ar_1)) [ 0 <= 0 ] 3.97/1.95 3.97/1.95 start location: koat_start 3.97/1.95 3.97/1.95 leaf cost: 0 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Complexity upper bound 128*ar_0 + 6*ar_0^2 + 233 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Time: 0.066 sec (SMT: 0.060 sec) 3.97/1.95 3.97/1.95 3.97/1.95 ---------------------------------------- 3.97/1.95 3.97/1.95 (2) 3.97/1.95 BOUNDS(1, n^2) 3.97/1.95 3.97/1.95 ---------------------------------------- 3.97/1.95 3.97/1.95 (3) Loat Proof (FINISHED) 3.97/1.95 3.97/1.95 3.97/1.95 ### Pre-processing the ITS problem ### 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Initial linear ITS problem 3.97/1.95 3.97/1.95 Start location: start 3.97/1.95 3.97/1.95 0: eval1 -> eval2 : A'=1+A, B'=1, [ A>=0 ], cost: 1 3.97/1.95 3.97/1.95 1: eval2 -> eval2 : B'=1+B, [ A>=0 && B>=1 && A>=B ], cost: 1 3.97/1.95 3.97/1.95 2: eval2 -> eval1 : A'=-2+A, [ A>=0 && B>=1 && B>=1+A ], cost: 1 3.97/1.95 3.97/1.95 3: start -> eval1 : [], cost: 1 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Simplified all rules, resulting in: 3.97/1.95 3.97/1.95 Start location: start 3.97/1.95 3.97/1.95 0: eval1 -> eval2 : A'=1+A, B'=1, [ A>=0 ], cost: 1 3.97/1.95 3.97/1.95 1: eval2 -> eval2 : B'=1+B, [ B>=1 && A>=B ], cost: 1 3.97/1.95 3.97/1.95 2: eval2 -> eval1 : A'=-2+A, [ A>=0 && B>=1 && B>=1+A ], cost: 1 3.97/1.95 3.97/1.95 3: start -> eval1 : [], cost: 1 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 ### Simplification by acceleration and chaining ### 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Accelerating simple loops of location 1. 3.97/1.95 3.97/1.95 Accelerating the following rules: 3.97/1.95 3.97/1.95 1: eval2 -> eval2 : B'=1+B, [ B>=1 && A>=B ], cost: 1 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Accelerated rule 1 with metering function 1+A-B, yielding the new rule 4. 3.97/1.95 3.97/1.95 Removing the simple loops: 1. 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Accelerated all simple loops using metering functions (where possible): 3.97/1.95 3.97/1.95 Start location: start 3.97/1.95 3.97/1.95 0: eval1 -> eval2 : A'=1+A, B'=1, [ A>=0 ], cost: 1 3.97/1.95 3.97/1.95 2: eval2 -> eval1 : A'=-2+A, [ A>=0 && B>=1 && B>=1+A ], cost: 1 3.97/1.95 3.97/1.95 4: eval2 -> eval2 : B'=1+A, [ B>=1 && A>=B ], cost: 1+A-B 3.97/1.95 3.97/1.95 3: start -> eval1 : [], cost: 1 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Chained accelerated rules (with incoming rules): 3.97/1.95 3.97/1.95 Start location: start 3.97/1.95 3.97/1.95 0: eval1 -> eval2 : A'=1+A, B'=1, [ A>=0 ], cost: 1 3.97/1.95 3.97/1.95 5: eval1 -> eval2 : A'=1+A, B'=2+A, [ A>=0 ], cost: 2+A 3.97/1.95 3.97/1.95 2: eval2 -> eval1 : A'=-2+A, [ A>=0 && B>=1 && B>=1+A ], cost: 1 3.97/1.95 3.97/1.95 3: start -> eval1 : [], cost: 1 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Eliminated locations (on tree-shaped paths): 3.97/1.95 3.97/1.95 Start location: start 3.97/1.95 3.97/1.95 6: eval1 -> eval1 : A'=-1+A, B'=2+A, [ A>=0 ], cost: 3+A 3.97/1.95 3.97/1.95 3: start -> eval1 : [], cost: 1 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Accelerating simple loops of location 0. 3.97/1.95 3.97/1.95 Accelerating the following rules: 3.97/1.95 3.97/1.95 6: eval1 -> eval1 : A'=-1+A, B'=2+A, [ A>=0 ], cost: 3+A 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Accelerated rule 6 with metering function 1+A, yielding the new rule 7. 3.97/1.95 3.97/1.95 Removing the simple loops: 6. 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Accelerated all simple loops using metering functions (where possible): 3.97/1.95 3.97/1.95 Start location: start 3.97/1.95 3.97/1.95 7: eval1 -> eval1 : A'=-1, B'=2, [ A>=0 ], cost: 7/2-1/2*(1+A)^2+7/2*A+A*(1+A) 3.97/1.95 3.97/1.95 3: start -> eval1 : [], cost: 1 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Chained accelerated rules (with incoming rules): 3.97/1.95 3.97/1.95 Start location: start 3.97/1.95 3.97/1.95 3: start -> eval1 : [], cost: 1 3.97/1.95 3.97/1.95 8: start -> eval1 : A'=-1, B'=2, [ A>=0 ], cost: 9/2-1/2*(1+A)^2+7/2*A+A*(1+A) 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Removed unreachable locations (and leaf rules with constant cost): 3.97/1.95 3.97/1.95 Start location: start 3.97/1.95 3.97/1.95 8: start -> eval1 : A'=-1, B'=2, [ A>=0 ], cost: 9/2-1/2*(1+A)^2+7/2*A+A*(1+A) 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 ### Computing asymptotic complexity ### 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Fully simplified ITS problem 3.97/1.95 3.97/1.95 Start location: start 3.97/1.95 3.97/1.95 8: start -> eval1 : A'=-1, B'=2, [ A>=0 ], cost: 9/2-1/2*(1+A)^2+7/2*A+A*(1+A) 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Computing asymptotic complexity for rule 8 3.97/1.95 3.97/1.95 Solved the limit problem by the following transformations: 3.97/1.95 3.97/1.95 Created initial limit problem: 3.97/1.95 3.97/1.95 4+7/2*A+1/2*A^2 (+), 1+A (+/+!) [not solved] 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 removing all constraints (solved by SMT) 3.97/1.95 3.97/1.95 resulting limit problem: [solved] 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 applying transformation rule (C) using substitution {A==n} 3.97/1.95 3.97/1.95 resulting limit problem: 3.97/1.95 3.97/1.95 [solved] 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Solution: 3.97/1.95 3.97/1.95 A / n 3.97/1.95 3.97/1.95 Resulting cost 4+1/2*n^2+7/2*n has complexity: Poly(n^2) 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Found new complexity Poly(n^2). 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 Obtained the following overall complexity (w.r.t. the length of the input n): 3.97/1.95 3.97/1.95 Complexity: Poly(n^2) 3.97/1.95 3.97/1.95 Cpx degree: 2 3.97/1.95 3.97/1.95 Solved cost: 4+1/2*n^2+7/2*n 3.97/1.95 3.97/1.95 Rule cost: 9/2-1/2*(1+A)^2+7/2*A+A*(1+A) 3.97/1.95 3.97/1.95 Rule guard: [ A>=0 ] 3.97/1.95 3.97/1.95 3.97/1.95 3.97/1.95 WORST_CASE(Omega(n^2),?) 3.97/1.95 3.97/1.95 3.97/1.95 ---------------------------------------- 3.97/1.95 3.97/1.95 (4) 3.97/1.95 BOUNDS(n^2, INF) 3.97/1.97 EOF