4.27/2.11 WORST_CASE(Omega(n^2), O(n^2)) 4.27/2.11 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.27/2.11 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.27/2.11 4.27/2.11 4.27/2.11 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, max(1, 3 + 2 * Arg_0) + nat(3 * Arg_0) + nat(Arg_0 * max(3 * Arg_0, -3) + max(3 * Arg_0, -3))). 4.27/2.11 4.27/2.11 (0) CpxIntTrs 4.27/2.11 (1) Koat2 Proof [FINISHED, 249 ms] 4.27/2.11 (2) BOUNDS(1, max(1, 3 + 2 * Arg_0) + nat(3 * Arg_0) + nat(Arg_0 * max(3 * Arg_0, -3) + max(3 * Arg_0, -3))) 4.27/2.11 (3) Loat Proof [FINISHED, 416 ms] 4.27/2.11 (4) BOUNDS(n^2, INF) 4.27/2.11 4.27/2.11 4.27/2.11 ---------------------------------------- 4.27/2.11 4.27/2.11 (0) 4.27/2.11 Obligation: 4.27/2.11 Complexity Int TRS consisting of the following rules: 4.27/2.11 eval1(A, B) -> Com_1(eval2(A, 0)) :|: A >= 0 4.27/2.11 eval2(A, B) -> Com_1(eval2(A, B + 1)) :|: A >= 1 + B 4.27/2.11 eval2(A, B) -> Com_1(eval1(A - 1, B)) :|: B >= A 4.27/2.11 start(A, B) -> Com_1(eval1(A, B)) :|: TRUE 4.27/2.11 4.27/2.11 The start-symbols are:[start_2] 4.27/2.11 4.27/2.11 4.27/2.11 ---------------------------------------- 4.27/2.11 4.27/2.11 (1) Koat2 Proof (FINISHED) 4.27/2.11 YES( ?, 1+2*max([0, 1+Arg_0])+max([0, 3*Arg_0])+max([0, (1+Arg_0)*max([-3, 3*Arg_0])]) {O(n^2)}) 4.27/2.11 4.27/2.11 4.27/2.11 4.27/2.11 Initial Complexity Problem: 4.27/2.11 4.27/2.11 Start: start 4.27/2.11 4.27/2.11 Program_Vars: Arg_0, Arg_1 4.27/2.11 4.27/2.11 Temp_Vars: 4.27/2.11 4.27/2.11 Locations: eval1, eval2, start 4.27/2.11 4.27/2.11 Transitions: 4.27/2.11 4.27/2.11 eval1(Arg_0,Arg_1) -> eval2(Arg_0,0):|:0 <= Arg_0 4.27/2.11 4.27/2.11 eval2(Arg_0,Arg_1) -> eval1(Arg_0-1,Arg_1):|:Arg_1 <= Arg_0 && 0 <= Arg_1 && 0 <= Arg_0+Arg_1 && 0 <= Arg_0 && Arg_0 <= Arg_1 4.27/2.11 4.27/2.11 eval2(Arg_0,Arg_1) -> eval2(Arg_0,Arg_1+1):|:Arg_1 <= Arg_0 && 0 <= Arg_1 && 0 <= Arg_0+Arg_1 && 0 <= Arg_0 && 1+Arg_1 <= Arg_0 4.27/2.11 4.27/2.11 start(Arg_0,Arg_1) -> eval1(Arg_0,Arg_1):|: 4.27/2.11 4.27/2.11 4.27/2.11 4.27/2.11 Timebounds: 4.27/2.11 4.27/2.11 Overall timebound: 1+2*max([0, 1+Arg_0])+max([0, 3*Arg_0])+max([0, (1+Arg_0)*max([-3, 3*Arg_0])]) {O(n^2)} 4.27/2.11 4.27/2.11 0: eval1->eval2: max([0, 1+Arg_0]) {O(n)} 4.27/2.11 4.27/2.11 1: eval2->eval2: max([0, 3*Arg_0])+max([0, (1+Arg_0)*max([-3, 3*Arg_0])]) {O(n^2)} 4.27/2.11 4.27/2.11 2: eval2->eval1: max([0, 1+Arg_0]) {O(n)} 4.27/2.11 4.27/2.11 3: start->eval1: 1 {O(1)} 4.27/2.11 4.27/2.11 4.27/2.11 4.27/2.11 Costbounds: 4.27/2.11 4.27/2.11 Overall costbound: 1+2*max([0, 1+Arg_0])+max([0, 3*Arg_0])+max([0, (1+Arg_0)*max([-3, 3*Arg_0])]) {O(n^2)} 4.27/2.11 4.27/2.11 0: eval1->eval2: max([0, 1+Arg_0]) {O(n)} 4.27/2.11 4.27/2.11 1: eval2->eval2: max([0, 3*Arg_0])+max([0, (1+Arg_0)*max([-3, 3*Arg_0])]) {O(n^2)} 4.27/2.11 4.27/2.11 2: eval2->eval1: max([0, 1+Arg_0]) {O(n)} 4.27/2.11 4.27/2.11 3: start->eval1: 1 {O(1)} 4.27/2.11 4.27/2.11 4.27/2.11 4.27/2.11 Sizebounds: 4.27/2.11 4.27/2.11 `Lower: 4.27/2.11 4.27/2.11 0: eval1->eval2, Arg_0: 0 {O(1)} 4.27/2.11 4.27/2.11 0: eval1->eval2, Arg_1: 0 {O(1)} 4.27/2.11 4.27/2.11 1: eval2->eval2, Arg_0: 1 {O(1)} 4.27/2.11 4.27/2.11 1: eval2->eval2, Arg_1: 1 {O(1)} 4.27/2.11 4.27/2.11 2: eval2->eval1, Arg_0: -1 {O(1)} 4.27/2.11 4.27/2.11 2: eval2->eval1, Arg_1: 0 {O(1)} 4.27/2.11 4.27/2.11 3: start->eval1, Arg_0: Arg_0 {O(n)} 4.27/2.11 4.27/2.11 3: start->eval1, Arg_1: Arg_1 {O(n)} 4.27/2.11 4.27/2.11 `Upper: 4.27/2.11 4.27/2.11 0: eval1->eval2, Arg_0: Arg_0 {O(n)} 4.27/2.11 4.27/2.11 0: eval1->eval2, Arg_1: 0 {O(1)} 4.27/2.11 4.27/2.11 1: eval2->eval2, Arg_0: Arg_0 {O(n)} 4.27/2.11 4.27/2.11 1: eval2->eval2, Arg_1: max([0, 3*Arg_0])+max([0, (1+Arg_0)*max([-3, 3*Arg_0])]) {O(n^2)} 4.27/2.11 4.27/2.11 2: eval2->eval1, Arg_0: Arg_0 {O(n)} 4.27/2.11 4.27/2.11 2: eval2->eval1, Arg_1: max([0, max([0, 3*Arg_0])+max([0, (1+Arg_0)*max([-3, 3*Arg_0])])]) {O(n^2)} 4.27/2.11 4.27/2.11 3: start->eval1, Arg_0: Arg_0 {O(n)} 4.27/2.11 4.27/2.11 3: start->eval1, Arg_1: Arg_1 {O(n)} 4.27/2.11 4.27/2.11 4.27/2.11 ---------------------------------------- 4.27/2.11 4.27/2.11 (2) 4.27/2.11 BOUNDS(1, max(1, 3 + 2 * Arg_0) + nat(3 * Arg_0) + nat(Arg_0 * max(3 * Arg_0, -3) + max(3 * Arg_0, -3))) 4.27/2.11 4.27/2.11 ---------------------------------------- 4.27/2.11 4.27/2.11 (3) Loat Proof (FINISHED) 4.27/2.11 4.27/2.11 4.27/2.11 ### Pre-processing the ITS problem ### 4.27/2.11 4.27/2.11 4.27/2.11 4.27/2.11 Initial linear ITS problem 4.27/2.11 4.27/2.11 Start location: start 4.27/2.11 4.27/2.11 0: eval1 -> eval2 : B'=0, [ A>=0 ], cost: 1 4.27/2.11 4.27/2.11 1: eval2 -> eval2 : B'=1+B, [ A>=1+B ], cost: 1 4.27/2.11 4.27/2.11 2: eval2 -> eval1 : A'=-1+A, [ B>=A ], cost: 1 4.27/2.11 4.27/2.11 3: start -> eval1 : [], cost: 1 4.27/2.11 4.27/2.11 4.27/2.11 4.27/2.11 ### Simplification by acceleration and chaining ### 4.27/2.11 4.27/2.11 4.27/2.11 4.27/2.11 Accelerating simple loops of location 1. 4.27/2.11 4.27/2.11 Accelerating the following rules: 4.27/2.11 4.27/2.11 1: eval2 -> eval2 : B'=1+B, [ A>=1+B ], cost: 1 4.27/2.11 4.27/2.11 4.27/2.11 4.27/2.11 Accelerated rule 1 with metering function A-B, yielding the new rule 4. 4.27/2.11 4.27/2.11 Removing the simple loops: 1. 4.27/2.11 4.27/2.11 4.27/2.11 4.27/2.11 Accelerated all simple loops using metering functions (where possible): 4.27/2.11 4.27/2.11 Start location: start 4.27/2.11 4.27/2.11 0: eval1 -> eval2 : B'=0, [ A>=0 ], cost: 1 4.27/2.11 4.27/2.11 2: eval2 -> eval1 : A'=-1+A, [ B>=A ], cost: 1 4.27/2.11 4.27/2.11 4: eval2 -> eval2 : B'=A, [ A>=1+B ], cost: A-B 4.27/2.11 4.27/2.11 3: start -> eval1 : [], cost: 1 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Chained accelerated rules (with incoming rules): 4.27/2.12 4.27/2.12 Start location: start 4.27/2.12 4.27/2.12 0: eval1 -> eval2 : B'=0, [ A>=0 ], cost: 1 4.27/2.12 4.27/2.12 5: eval1 -> eval2 : B'=A, [ A>=1 ], cost: 1+A 4.27/2.12 4.27/2.12 2: eval2 -> eval1 : A'=-1+A, [ B>=A ], cost: 1 4.27/2.12 4.27/2.12 3: start -> eval1 : [], cost: 1 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Eliminated locations (on tree-shaped paths): 4.27/2.12 4.27/2.12 Start location: start 4.27/2.12 4.27/2.12 6: eval1 -> eval1 : A'=-1+A, B'=0, [ A>=0 && 0>=A ], cost: 2 4.27/2.12 4.27/2.12 7: eval1 -> eval1 : A'=-1+A, B'=A, [ A>=1 ], cost: 2+A 4.27/2.12 4.27/2.12 3: start -> eval1 : [], cost: 1 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Accelerating simple loops of location 0. 4.27/2.12 4.27/2.12 Simplified some of the simple loops (and removed duplicate rules). 4.27/2.12 4.27/2.12 Accelerating the following rules: 4.27/2.12 4.27/2.12 6: eval1 -> eval1 : A'=-1+A, B'=0, [ -A==0 ], cost: 2 4.27/2.12 4.27/2.12 7: eval1 -> eval1 : A'=-1+A, B'=A, [ A>=1 ], cost: 2+A 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Accelerated rule 6 with metering function 1+A, yielding the new rule 8. 4.27/2.12 4.27/2.12 Accelerated rule 7 with metering function A, yielding the new rule 9. 4.27/2.12 4.27/2.12 Removing the simple loops: 6 7. 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Accelerated all simple loops using metering functions (where possible): 4.27/2.12 4.27/2.12 Start location: start 4.27/2.12 4.27/2.12 8: eval1 -> eval1 : A'=-1, B'=0, [ -A==0 ], cost: 2+2*A 4.27/2.12 4.27/2.12 9: eval1 -> eval1 : A'=0, B'=1, [ A>=1 ], cost: 5/2*A+1/2*A^2 4.27/2.12 4.27/2.12 3: start -> eval1 : [], cost: 1 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Chained accelerated rules (with incoming rules): 4.27/2.12 4.27/2.12 Start location: start 4.27/2.12 4.27/2.12 3: start -> eval1 : [], cost: 1 4.27/2.12 4.27/2.12 10: start -> eval1 : A'=-1, B'=0, [ -A==0 ], cost: 3+2*A 4.27/2.12 4.27/2.12 11: start -> eval1 : A'=0, B'=1, [ A>=1 ], cost: 1+5/2*A+1/2*A^2 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Removed unreachable locations (and leaf rules with constant cost): 4.27/2.12 4.27/2.12 Start location: start 4.27/2.12 4.27/2.12 10: start -> eval1 : A'=-1, B'=0, [ -A==0 ], cost: 3+2*A 4.27/2.12 4.27/2.12 11: start -> eval1 : A'=0, B'=1, [ A>=1 ], cost: 1+5/2*A+1/2*A^2 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 ### Computing asymptotic complexity ### 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Fully simplified ITS problem 4.27/2.12 4.27/2.12 Start location: start 4.27/2.12 4.27/2.12 10: start -> eval1 : A'=-1, B'=0, [ -A==0 ], cost: 3+2*A 4.27/2.12 4.27/2.12 11: start -> eval1 : A'=0, B'=1, [ A>=1 ], cost: 1+5/2*A+1/2*A^2 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Computing asymptotic complexity for rule 10 4.27/2.12 4.27/2.12 Could not solve the limit problem. 4.27/2.12 4.27/2.12 Resulting cost 0 has complexity: Unknown 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Computing asymptotic complexity for rule 11 4.27/2.12 4.27/2.12 Solved the limit problem by the following transformations: 4.27/2.12 4.27/2.12 Created initial limit problem: 4.27/2.12 4.27/2.12 1+5/2*A+1/2*A^2 (+), A (+/+!) [not solved] 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 removing all constraints (solved by SMT) 4.27/2.12 4.27/2.12 resulting limit problem: [solved] 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 applying transformation rule (C) using substitution {A==n} 4.27/2.12 4.27/2.12 resulting limit problem: 4.27/2.12 4.27/2.12 [solved] 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Solution: 4.27/2.12 4.27/2.12 A / n 4.27/2.12 4.27/2.12 Resulting cost 1+1/2*n^2+5/2*n has complexity: Poly(n^2) 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Found new complexity Poly(n^2). 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 Obtained the following overall complexity (w.r.t. the length of the input n): 4.27/2.12 4.27/2.12 Complexity: Poly(n^2) 4.27/2.12 4.27/2.12 Cpx degree: 2 4.27/2.12 4.27/2.12 Solved cost: 1+1/2*n^2+5/2*n 4.27/2.12 4.27/2.12 Rule cost: 1+5/2*A+1/2*A^2 4.27/2.12 4.27/2.12 Rule guard: [ A>=1 ] 4.27/2.12 4.27/2.12 4.27/2.12 4.27/2.12 WORST_CASE(Omega(n^2),?) 4.27/2.12 4.27/2.12 4.27/2.12 ---------------------------------------- 4.27/2.12 4.27/2.12 (4) 4.27/2.12 BOUNDS(n^2, INF) 4.27/2.15 EOF