3.87/1.78 WORST_CASE(?, O(1)) 3.87/1.79 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.87/1.79 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.87/1.79 3.87/1.79 3.87/1.79 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.87/1.79 3.87/1.79 (0) CpxIntTrs 3.87/1.79 (1) Koat Proof [FINISHED, 84 ms] 3.87/1.79 (2) BOUNDS(1, 1) 3.87/1.79 3.87/1.79 3.87/1.79 ---------------------------------------- 3.87/1.79 3.87/1.79 (0) 3.87/1.79 Obligation: 3.87/1.79 Complexity Int TRS consisting of the following rules: 3.87/1.79 eval(A) -> Com_1(eval(B)) :|: A >= 0 && B + 2 * A >= 10 && 10 >= 2 * A + B 3.87/1.79 start(A) -> Com_1(eval(A)) :|: TRUE 3.87/1.79 3.87/1.79 The start-symbols are:[start_1] 3.87/1.79 3.87/1.79 3.87/1.79 ---------------------------------------- 3.87/1.79 3.87/1.79 (1) Koat Proof (FINISHED) 3.87/1.79 YES(?, 5) 3.87/1.79 3.87/1.79 3.87/1.79 3.87/1.79 Initial complexity problem: 3.87/1.79 3.87/1.79 1: T: 3.87/1.79 3.87/1.79 (Comp: ?, Cost: 1) eval(ar_0) -> Com_1(eval(-2*ar_0 + 10)) [ ar_0 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: ?, Cost: 1) start(ar_0) -> Com_1(eval(ar_0)) 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(start(ar_0)) [ 0 <= 0 ] 3.87/1.79 3.87/1.79 start location: koat_start 3.87/1.79 3.87/1.79 leaf cost: 0 3.87/1.79 3.87/1.79 3.87/1.79 3.87/1.79 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.87/1.79 3.87/1.79 2: T: 3.87/1.79 3.87/1.79 (Comp: ?, Cost: 1) eval(ar_0) -> Com_1(eval(-2*ar_0 + 10)) [ ar_0 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 1) start(ar_0) -> Com_1(eval(ar_0)) 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(start(ar_0)) [ 0 <= 0 ] 3.87/1.79 3.87/1.79 start location: koat_start 3.87/1.79 3.87/1.79 leaf cost: 0 3.87/1.79 3.87/1.79 3.87/1.79 3.87/1.79 By chaining the transition start(ar_0) -> Com_1(eval(ar_0)) with all transitions in problem 2, the following new transition is obtained: 3.87/1.79 3.87/1.79 start(ar_0) -> Com_1(eval(-2*ar_0 + 10)) [ ar_0 >= 0 ] 3.87/1.79 3.87/1.79 We thus obtain the following problem: 3.87/1.79 3.87/1.79 3: T: 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 2) start(ar_0) -> Com_1(eval(-2*ar_0 + 10)) [ ar_0 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: ?, Cost: 1) eval(ar_0) -> Com_1(eval(-2*ar_0 + 10)) [ ar_0 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(start(ar_0)) [ 0 <= 0 ] 3.87/1.79 3.87/1.79 start location: koat_start 3.87/1.79 3.87/1.79 leaf cost: 0 3.87/1.79 3.87/1.79 3.87/1.79 3.87/1.79 By chaining the transition start(ar_0) -> Com_1(eval(-2*ar_0 + 10)) [ ar_0 >= 0 ] with all transitions in problem 3, the following new transition is obtained: 3.87/1.79 3.87/1.79 start(ar_0) -> Com_1(eval(4*ar_0 - 10)) [ ar_0 >= 0 /\ -2*ar_0 + 10 >= 0 ] 3.87/1.79 3.87/1.79 We thus obtain the following problem: 3.87/1.79 3.87/1.79 4: T: 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 3) start(ar_0) -> Com_1(eval(4*ar_0 - 10)) [ ar_0 >= 0 /\ -2*ar_0 + 10 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: ?, Cost: 1) eval(ar_0) -> Com_1(eval(-2*ar_0 + 10)) [ ar_0 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(start(ar_0)) [ 0 <= 0 ] 3.87/1.79 3.87/1.79 start location: koat_start 3.87/1.79 3.87/1.79 leaf cost: 0 3.87/1.79 3.87/1.79 3.87/1.79 3.87/1.79 By chaining the transition start(ar_0) -> Com_1(eval(4*ar_0 - 10)) [ ar_0 >= 0 /\ -2*ar_0 + 10 >= 0 ] with all transitions in problem 4, the following new transition is obtained: 3.87/1.79 3.87/1.79 start(ar_0) -> Com_1(eval(-8*ar_0 + 30)) [ ar_0 >= 0 /\ -2*ar_0 + 10 >= 0 /\ 4*ar_0 - 10 >= 0 ] 3.87/1.79 3.87/1.79 We thus obtain the following problem: 3.87/1.79 3.87/1.79 5: T: 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 4) start(ar_0) -> Com_1(eval(-8*ar_0 + 30)) [ ar_0 >= 0 /\ -2*ar_0 + 10 >= 0 /\ 4*ar_0 - 10 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: ?, Cost: 1) eval(ar_0) -> Com_1(eval(-2*ar_0 + 10)) [ ar_0 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(start(ar_0)) [ 0 <= 0 ] 3.87/1.79 3.87/1.79 start location: koat_start 3.87/1.79 3.87/1.79 leaf cost: 0 3.87/1.79 3.87/1.79 3.87/1.79 3.87/1.79 By chaining the transition start(ar_0) -> Com_1(eval(-8*ar_0 + 30)) [ ar_0 >= 0 /\ -2*ar_0 + 10 >= 0 /\ 4*ar_0 - 10 >= 0 ] with all transitions in problem 5, the following new transition is obtained: 3.87/1.79 3.87/1.79 start(ar_0) -> Com_1(eval(16*ar_0 - 50)) [ ar_0 >= 0 /\ -2*ar_0 + 10 >= 0 /\ 4*ar_0 - 10 >= 0 /\ -8*ar_0 + 30 >= 0 ] 3.87/1.79 3.87/1.79 We thus obtain the following problem: 3.87/1.79 3.87/1.79 6: T: 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 5) start(ar_0) -> Com_1(eval(16*ar_0 - 50)) [ ar_0 >= 0 /\ -2*ar_0 + 10 >= 0 /\ 4*ar_0 - 10 >= 0 /\ -8*ar_0 + 30 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: ?, Cost: 1) eval(ar_0) -> Com_1(eval(-2*ar_0 + 10)) [ ar_0 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(start(ar_0)) [ 0 <= 0 ] 3.87/1.79 3.87/1.79 start location: koat_start 3.87/1.79 3.87/1.79 leaf cost: 0 3.87/1.79 3.87/1.79 3.87/1.79 3.87/1.79 Testing for reachability in the complexity graph removes the following transition from problem 6: 3.87/1.79 3.87/1.79 eval(ar_0) -> Com_1(eval(-2*ar_0 + 10)) [ ar_0 >= 0 ] 3.87/1.79 3.87/1.79 We thus obtain the following problem: 3.87/1.79 3.87/1.79 7: T: 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 5) start(ar_0) -> Com_1(eval(16*ar_0 - 50)) [ ar_0 >= 0 /\ -2*ar_0 + 10 >= 0 /\ 4*ar_0 - 10 >= 0 /\ -8*ar_0 + 30 >= 0 ] 3.87/1.79 3.87/1.79 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(start(ar_0)) [ 0 <= 0 ] 3.87/1.79 3.87/1.79 start location: koat_start 3.87/1.79 3.87/1.79 leaf cost: 0 3.87/1.79 3.87/1.79 3.87/1.79 3.87/1.79 Complexity upper bound 5 3.87/1.79 3.87/1.79 3.87/1.79 3.87/1.79 Time: 0.196 sec (SMT: 0.188 sec) 3.87/1.79 3.87/1.79 3.87/1.79 ---------------------------------------- 3.87/1.79 3.87/1.79 (2) 3.87/1.79 BOUNDS(1, 1) 3.87/1.81 EOF