4.02/1.83 WORST_CASE(Omega(n^1), O(n^1)) 4.02/1.84 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.02/1.84 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.02/1.84 4.02/1.84 4.02/1.84 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + Arg_0 + -1 * Arg_1 + -1 * Arg_2)). 4.02/1.84 4.02/1.84 (0) CpxIntTrs 4.02/1.84 (1) Koat2 Proof [FINISHED, 147 ms] 4.02/1.84 (2) BOUNDS(1, max(1, 1 + Arg_0 + -1 * Arg_1 + -1 * Arg_2)) 4.02/1.84 (3) Loat Proof [FINISHED, 121 ms] 4.02/1.84 (4) BOUNDS(n^1, INF) 4.02/1.84 4.02/1.84 4.02/1.84 ---------------------------------------- 4.02/1.84 4.02/1.84 (0) 4.02/1.84 Obligation: 4.02/1.84 Complexity Int TRS consisting of the following rules: 4.02/1.84 eval(A, B, C) -> Com_1(eval(A, B + 1, C + 1)) :|: A >= B + C + 1 4.02/1.84 start(A, B, C) -> Com_1(eval(A, B, C)) :|: TRUE 4.02/1.84 4.02/1.84 The start-symbols are:[start_3] 4.02/1.84 4.02/1.84 4.02/1.84 ---------------------------------------- 4.02/1.84 4.02/1.84 (1) Koat2 Proof (FINISHED) 4.02/1.84 YES( ?, max([1, 1+Arg_0+-(Arg_2)-Arg_1]) {O(n)}) 4.02/1.84 4.02/1.84 4.02/1.84 4.02/1.84 Initial Complexity Problem: 4.02/1.84 4.02/1.84 Start: start 4.02/1.84 4.02/1.84 Program_Vars: Arg_0, Arg_1, Arg_2 4.02/1.84 4.02/1.84 Temp_Vars: 4.02/1.84 4.02/1.84 Locations: eval, start 4.02/1.84 4.02/1.84 Transitions: 4.02/1.84 4.02/1.84 eval(Arg_0,Arg_1,Arg_2) -> eval(Arg_0,Arg_1+1,Arg_2+1):|:Arg_1+Arg_2+1 <= Arg_0 4.02/1.85 4.02/1.85 start(Arg_0,Arg_1,Arg_2) -> eval(Arg_0,Arg_1,Arg_2):|: 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Timebounds: 4.02/1.85 4.02/1.85 Overall timebound: max([1, 1+Arg_0+-(Arg_2)-Arg_1]) {O(n)} 4.02/1.85 4.02/1.85 0: eval->eval: max([0, Arg_0+-(Arg_2)-Arg_1]) {O(n)} 4.02/1.85 4.02/1.85 1: start->eval: 1 {O(1)} 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Costbounds: 4.02/1.85 4.02/1.85 Overall costbound: max([1, 1+Arg_0+-(Arg_2)-Arg_1]) {O(n)} 4.02/1.85 4.02/1.85 0: eval->eval: max([0, Arg_0+-(Arg_2)-Arg_1]) {O(n)} 4.02/1.85 4.02/1.85 1: start->eval: 1 {O(1)} 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Sizebounds: 4.02/1.85 4.02/1.85 `Lower: 4.02/1.85 4.02/1.85 0: eval->eval, Arg_0: Arg_0 {O(n)} 4.02/1.85 4.02/1.85 0: eval->eval, Arg_1: Arg_1 {O(n)} 4.02/1.85 4.02/1.85 0: eval->eval, Arg_2: Arg_2 {O(n)} 4.02/1.85 4.02/1.85 1: start->eval, Arg_0: Arg_0 {O(n)} 4.02/1.85 4.02/1.85 1: start->eval, Arg_1: Arg_1 {O(n)} 4.02/1.85 4.02/1.85 1: start->eval, Arg_2: Arg_2 {O(n)} 4.02/1.85 4.02/1.85 `Upper: 4.02/1.85 4.02/1.85 0: eval->eval, Arg_0: Arg_0 {O(n)} 4.02/1.85 4.02/1.85 0: eval->eval, Arg_1: Arg_1+max([0, Arg_0+-(Arg_2)-Arg_1]) {O(n)} 4.02/1.85 4.02/1.85 0: eval->eval, Arg_2: Arg_2+max([0, Arg_0+-(Arg_2)-Arg_1]) {O(n)} 4.02/1.85 4.02/1.85 1: start->eval, Arg_0: Arg_0 {O(n)} 4.02/1.85 4.02/1.85 1: start->eval, Arg_1: Arg_1 {O(n)} 4.02/1.85 4.02/1.85 1: start->eval, Arg_2: Arg_2 {O(n)} 4.02/1.85 4.02/1.85 4.02/1.85 ---------------------------------------- 4.02/1.85 4.02/1.85 (2) 4.02/1.85 BOUNDS(1, max(1, 1 + Arg_0 + -1 * Arg_1 + -1 * Arg_2)) 4.02/1.85 4.02/1.85 ---------------------------------------- 4.02/1.85 4.02/1.85 (3) Loat Proof (FINISHED) 4.02/1.85 4.02/1.85 4.02/1.85 ### Pre-processing the ITS problem ### 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Initial linear ITS problem 4.02/1.85 4.02/1.85 Start location: start 4.02/1.85 4.02/1.85 0: eval -> eval : B'=1+B, C'=1+C, [ A>=1+C+B ], cost: 1 4.02/1.85 4.02/1.85 1: start -> eval : [], cost: 1 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 ### Simplification by acceleration and chaining ### 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Accelerating simple loops of location 0. 4.02/1.85 4.02/1.85 Accelerating the following rules: 4.02/1.85 4.02/1.85 0: eval -> eval : B'=1+B, C'=1+C, [ A>=1+C+B ], cost: 1 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Accelerated rule 0 with metering function meter (where 2*meter==-C+A-B), yielding the new rule 2. 4.02/1.85 4.02/1.85 Removing the simple loops: 0. 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Accelerated all simple loops using metering functions (where possible): 4.02/1.85 4.02/1.85 Start location: start 4.02/1.85 4.02/1.85 2: eval -> eval : B'=meter+B, C'=meter+C, [ A>=1+C+B && 2*meter==-C+A-B && meter>=1 ], cost: meter 4.02/1.85 4.02/1.85 1: start -> eval : [], cost: 1 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Chained accelerated rules (with incoming rules): 4.02/1.85 4.02/1.85 Start location: start 4.02/1.85 4.02/1.85 1: start -> eval : [], cost: 1 4.02/1.85 4.02/1.85 3: start -> eval : B'=meter+B, C'=meter+C, [ A>=1+C+B && 2*meter==-C+A-B && meter>=1 ], cost: 1+meter 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Removed unreachable locations (and leaf rules with constant cost): 4.02/1.85 4.02/1.85 Start location: start 4.02/1.85 4.02/1.85 3: start -> eval : B'=meter+B, C'=meter+C, [ A>=1+C+B && 2*meter==-C+A-B && meter>=1 ], cost: 1+meter 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 ### Computing asymptotic complexity ### 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Fully simplified ITS problem 4.02/1.85 4.02/1.85 Start location: start 4.02/1.85 4.02/1.85 3: start -> eval : B'=meter+B, C'=meter+C, [ A>=1+C+B && 2*meter==-C+A-B && meter>=1 ], cost: 1+meter 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Computing asymptotic complexity for rule 3 4.02/1.85 4.02/1.85 Solved the limit problem by the following transformations: 4.02/1.85 4.02/1.85 Created initial limit problem: 4.02/1.85 4.02/1.85 -C+A-B (+/+!), 1-2*meter-C+A-B (+/+!), 1+2*meter+C-A+B (+/+!), 1+meter (+) [not solved] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 applying transformation rule (C) using substitution {C==-2*meter+A-B} 4.02/1.85 4.02/1.85 resulting limit problem: 4.02/1.85 4.02/1.85 1 (+/+!), 2*meter (+/+!), 1+meter (+) [not solved] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 applying transformation rule (B), deleting 1 (+/+!) 4.02/1.85 4.02/1.85 resulting limit problem: 4.02/1.85 4.02/1.85 2*meter (+/+!), 1+meter (+) [not solved] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 removing all constraints (solved by SMT) 4.02/1.85 4.02/1.85 resulting limit problem: [solved] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 applying transformation rule (C) using substitution {meter==n} 4.02/1.85 4.02/1.85 resulting limit problem: 4.02/1.85 4.02/1.85 [solved] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Solved the limit problem by the following transformations: 4.02/1.85 4.02/1.85 Created initial limit problem: 4.02/1.85 4.02/1.85 -C+A-B (+/+!), 1-2*meter-C+A-B (+/+!), 1+2*meter+C-A+B (+/+!), 1+meter (+) [not solved] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 applying transformation rule (C) using substitution {C==-2*meter+A-B} 4.02/1.85 4.02/1.85 resulting limit problem: 4.02/1.85 4.02/1.85 1 (+/+!), 2*meter (+/+!), 1+meter (+) [not solved] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 applying transformation rule (B), deleting 1 (+/+!) 4.02/1.85 4.02/1.85 resulting limit problem: 4.02/1.85 4.02/1.85 2*meter (+/+!), 1+meter (+) [not solved] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 removing all constraints (solved by SMT) 4.02/1.85 4.02/1.85 resulting limit problem: [solved] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 applying transformation rule (C) using substitution {meter==n} 4.02/1.85 4.02/1.85 resulting limit problem: 4.02/1.85 4.02/1.85 [solved] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Solution: 4.02/1.85 4.02/1.85 meter / n 4.02/1.85 4.02/1.85 C / -2*n 4.02/1.85 4.02/1.85 A / 0 4.02/1.85 4.02/1.85 B / 0 4.02/1.85 4.02/1.85 Resulting cost 1+n has complexity: Poly(n^1) 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Found new complexity Poly(n^1). 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 Obtained the following overall complexity (w.r.t. the length of the input n): 4.02/1.85 4.02/1.85 Complexity: Poly(n^1) 4.02/1.85 4.02/1.85 Cpx degree: 1 4.02/1.85 4.02/1.85 Solved cost: 1+n 4.02/1.85 4.02/1.85 Rule cost: 1+meter 4.02/1.85 4.02/1.85 Rule guard: [ A>=1+C+B && 2*meter==-C+A-B ] 4.02/1.85 4.02/1.85 4.02/1.85 4.02/1.85 WORST_CASE(Omega(n^1),?) 4.02/1.85 4.02/1.85 4.02/1.85 ---------------------------------------- 4.02/1.85 4.02/1.85 (4) 4.02/1.85 BOUNDS(n^1, INF) 4.02/1.86 EOF