3.89/2.05 WORST_CASE(Omega(n^2), O(n^2)) 3.89/2.06 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.89/2.06 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.89/2.06 3.89/2.06 3.89/2.06 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, max(1, 1 + 3 * Arg_0) + nat(1 + Arg_0) + nat(Arg_0) + nat(3 * Arg_0^2)). 3.89/2.06 3.89/2.06 (0) CpxIntTrs 3.89/2.06 (1) Koat2 Proof [FINISHED, 256 ms] 3.89/2.06 (2) BOUNDS(1, max(1, 1 + 3 * Arg_0) + nat(1 + Arg_0) + nat(Arg_0) + nat(3 * Arg_0^2)) 3.89/2.06 (3) Loat Proof [FINISHED, 318 ms] 3.89/2.06 (4) BOUNDS(n^2, INF) 3.89/2.06 3.89/2.06 3.89/2.06 ---------------------------------------- 3.89/2.06 3.89/2.06 (0) 3.89/2.06 Obligation: 3.89/2.06 Complexity Int TRS consisting of the following rules: 3.89/2.06 eval1(A, B) -> Com_1(eval2(A, 0)) :|: A >= 1 3.89/2.06 eval2(A, B) -> Com_1(eval2(A, B + 1)) :|: A >= 1 && B >= 0 && A >= B + 1 3.89/2.06 eval2(A, B) -> Com_1(eval1(A - 1, B)) :|: A >= 1 && B >= 0 && B >= A 3.89/2.06 start(A, B) -> Com_1(eval1(A, B)) :|: TRUE 3.89/2.06 3.89/2.06 The start-symbols are:[start_2] 3.89/2.06 3.89/2.06 3.89/2.06 ---------------------------------------- 3.89/2.06 3.89/2.06 (1) Koat2 Proof (FINISHED) 3.89/2.06 YES( ?, 1+max([0, 3*Arg_0])+max([0, 1+Arg_0])+max([0, Arg_0])+max([0, max([3*-(Arg_0)*-(Arg_0), 3*Arg_0*Arg_0])]) {O(n^2)}) 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Initial Complexity Problem: 3.89/2.06 3.89/2.06 Start: start 3.89/2.06 3.89/2.06 Program_Vars: Arg_0, Arg_1 3.89/2.06 3.89/2.06 Temp_Vars: 3.89/2.06 3.89/2.06 Locations: eval1, eval2, start 3.89/2.06 3.89/2.06 Transitions: 3.89/2.06 3.89/2.06 eval1(Arg_0,Arg_1) -> eval2(Arg_0,0):|:1 <= Arg_0 3.89/2.06 3.89/2.06 eval2(Arg_0,Arg_1) -> eval1(Arg_0-1,Arg_1):|:0 <= Arg_1 && 1 <= Arg_0+Arg_1 && 1 <= Arg_0 && 1 <= Arg_0 && 0 <= Arg_1 && Arg_0 <= Arg_1 3.89/2.06 3.89/2.06 eval2(Arg_0,Arg_1) -> eval2(Arg_0,Arg_1+1):|:0 <= Arg_1 && 1 <= Arg_0+Arg_1 && 1 <= Arg_0 && 1 <= Arg_0 && 0 <= Arg_1 && Arg_1+1 <= Arg_0 3.89/2.06 3.89/2.06 start(Arg_0,Arg_1) -> eval1(Arg_0,Arg_1):|: 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Timebounds: 3.89/2.06 3.89/2.06 Overall timebound: 1+max([0, 3*Arg_0])+max([0, 1+Arg_0])+max([0, Arg_0])+max([0, max([3*-(Arg_0)*-(Arg_0), 3*Arg_0*Arg_0])]) {O(n^2)} 3.89/2.06 3.89/2.06 0: eval1->eval2: max([0, 1+Arg_0]) {O(n)} 3.89/2.06 3.89/2.06 1: eval2->eval2: max([0, Arg_0])+max([0, max([3*-(Arg_0)*-(Arg_0), 3*Arg_0*Arg_0])]) {O(n^2)} 3.89/2.06 3.89/2.06 2: eval2->eval1: max([0, 3*Arg_0]) {O(n)} 3.89/2.06 3.89/2.06 3: start->eval1: 1 {O(1)} 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Costbounds: 3.89/2.06 3.89/2.06 Overall costbound: 1+max([0, 3*Arg_0])+max([0, 1+Arg_0])+max([0, Arg_0])+max([0, max([3*-(Arg_0)*-(Arg_0), 3*Arg_0*Arg_0])]) {O(n^2)} 3.89/2.06 3.89/2.06 0: eval1->eval2: max([0, 1+Arg_0]) {O(n)} 3.89/2.06 3.89/2.06 1: eval2->eval2: max([0, Arg_0])+max([0, max([3*-(Arg_0)*-(Arg_0), 3*Arg_0*Arg_0])]) {O(n^2)} 3.89/2.06 3.89/2.06 2: eval2->eval1: max([0, 3*Arg_0]) {O(n)} 3.89/2.06 3.89/2.06 3: start->eval1: 1 {O(1)} 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Sizebounds: 3.89/2.06 3.89/2.06 `Lower: 3.89/2.06 3.89/2.06 0: eval1->eval2, Arg_0: 1 {O(1)} 3.89/2.06 3.89/2.06 0: eval1->eval2, Arg_1: 0 {O(1)} 3.89/2.06 3.89/2.06 1: eval2->eval2, Arg_0: 1 {O(1)} 3.89/2.06 3.89/2.06 1: eval2->eval2, Arg_1: 1 {O(1)} 3.89/2.06 3.89/2.06 2: eval2->eval1, Arg_0: 0 {O(1)} 3.89/2.06 3.89/2.06 2: eval2->eval1, Arg_1: 1 {O(1)} 3.89/2.06 3.89/2.06 3: start->eval1, Arg_0: Arg_0 {O(n)} 3.89/2.06 3.89/2.06 3: start->eval1, Arg_1: Arg_1 {O(n)} 3.89/2.06 3.89/2.06 `Upper: 3.89/2.06 3.89/2.06 0: eval1->eval2, Arg_0: Arg_0 {O(n)} 3.89/2.06 3.89/2.06 0: eval1->eval2, Arg_1: 0 {O(1)} 3.89/2.06 3.89/2.06 1: eval2->eval2, Arg_0: Arg_0 {O(n)} 3.89/2.06 3.89/2.06 1: eval2->eval2, Arg_1: max([0, Arg_0])+max([0, max([3*-(Arg_0)*-(Arg_0), 3*Arg_0*Arg_0])]) {O(n^2)} 3.89/2.06 3.89/2.06 2: eval2->eval1, Arg_0: Arg_0 {O(n)} 3.89/2.06 3.89/2.06 2: eval2->eval1, Arg_1: max([0, Arg_0])+max([0, max([3*-(Arg_0)*-(Arg_0), 3*Arg_0*Arg_0])]) {O(n^2)} 3.89/2.06 3.89/2.06 3: start->eval1, Arg_0: Arg_0 {O(n)} 3.89/2.06 3.89/2.06 3: start->eval1, Arg_1: Arg_1 {O(n)} 3.89/2.06 3.89/2.06 3.89/2.06 ---------------------------------------- 3.89/2.06 3.89/2.06 (2) 3.89/2.06 BOUNDS(1, max(1, 1 + 3 * Arg_0) + nat(1 + Arg_0) + nat(Arg_0) + nat(3 * Arg_0^2)) 3.89/2.06 3.89/2.06 ---------------------------------------- 3.89/2.06 3.89/2.06 (3) Loat Proof (FINISHED) 3.89/2.06 3.89/2.06 3.89/2.06 ### Pre-processing the ITS problem ### 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Initial linear ITS problem 3.89/2.06 3.89/2.06 Start location: start 3.89/2.06 3.89/2.06 0: eval1 -> eval2 : B'=0, [ A>=1 ], cost: 1 3.89/2.06 3.89/2.06 1: eval2 -> eval2 : B'=1+B, [ A>=1 && B>=0 && A>=1+B ], cost: 1 3.89/2.06 3.89/2.06 2: eval2 -> eval1 : A'=-1+A, [ A>=1 && B>=0 && B>=A ], cost: 1 3.89/2.06 3.89/2.06 3: start -> eval1 : [], cost: 1 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Simplified all rules, resulting in: 3.89/2.06 3.89/2.06 Start location: start 3.89/2.06 3.89/2.06 0: eval1 -> eval2 : B'=0, [ A>=1 ], cost: 1 3.89/2.06 3.89/2.06 1: eval2 -> eval2 : B'=1+B, [ B>=0 && A>=1+B ], cost: 1 3.89/2.06 3.89/2.06 2: eval2 -> eval1 : A'=-1+A, [ A>=1 && B>=0 && B>=A ], cost: 1 3.89/2.06 3.89/2.06 3: start -> eval1 : [], cost: 1 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 ### Simplification by acceleration and chaining ### 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Accelerating simple loops of location 1. 3.89/2.06 3.89/2.06 Accelerating the following rules: 3.89/2.06 3.89/2.06 1: eval2 -> eval2 : B'=1+B, [ B>=0 && A>=1+B ], cost: 1 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Accelerated rule 1 with metering function A-B, yielding the new rule 4. 3.89/2.06 3.89/2.06 Removing the simple loops: 1. 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Accelerated all simple loops using metering functions (where possible): 3.89/2.06 3.89/2.06 Start location: start 3.89/2.06 3.89/2.06 0: eval1 -> eval2 : B'=0, [ A>=1 ], cost: 1 3.89/2.06 3.89/2.06 2: eval2 -> eval1 : A'=-1+A, [ A>=1 && B>=0 && B>=A ], cost: 1 3.89/2.06 3.89/2.06 4: eval2 -> eval2 : B'=A, [ B>=0 && A>=1+B ], cost: A-B 3.89/2.06 3.89/2.06 3: start -> eval1 : [], cost: 1 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Chained accelerated rules (with incoming rules): 3.89/2.06 3.89/2.06 Start location: start 3.89/2.06 3.89/2.06 0: eval1 -> eval2 : B'=0, [ A>=1 ], cost: 1 3.89/2.06 3.89/2.06 5: eval1 -> eval2 : B'=A, [ A>=1 ], cost: 1+A 3.89/2.06 3.89/2.06 2: eval2 -> eval1 : A'=-1+A, [ A>=1 && B>=0 && B>=A ], cost: 1 3.89/2.06 3.89/2.06 3: start -> eval1 : [], cost: 1 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Eliminated locations (on tree-shaped paths): 3.89/2.06 3.89/2.06 Start location: start 3.89/2.06 3.89/2.06 6: eval1 -> eval1 : A'=-1+A, B'=A, [ A>=1 ], cost: 2+A 3.89/2.06 3.89/2.06 3: start -> eval1 : [], cost: 1 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Accelerating simple loops of location 0. 3.89/2.06 3.89/2.06 Accelerating the following rules: 3.89/2.06 3.89/2.06 6: eval1 -> eval1 : A'=-1+A, B'=A, [ A>=1 ], cost: 2+A 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Accelerated rule 6 with metering function A, yielding the new rule 7. 3.89/2.06 3.89/2.06 Removing the simple loops: 6. 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Accelerated all simple loops using metering functions (where possible): 3.89/2.06 3.89/2.06 Start location: start 3.89/2.06 3.89/2.06 7: eval1 -> eval1 : A'=0, B'=1, [ A>=1 ], cost: 5/2*A+1/2*A^2 3.89/2.06 3.89/2.06 3: start -> eval1 : [], cost: 1 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Chained accelerated rules (with incoming rules): 3.89/2.06 3.89/2.06 Start location: start 3.89/2.06 3.89/2.06 3: start -> eval1 : [], cost: 1 3.89/2.06 3.89/2.06 8: start -> eval1 : A'=0, B'=1, [ A>=1 ], cost: 1+5/2*A+1/2*A^2 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Removed unreachable locations (and leaf rules with constant cost): 3.89/2.06 3.89/2.06 Start location: start 3.89/2.06 3.89/2.06 8: start -> eval1 : A'=0, B'=1, [ A>=1 ], cost: 1+5/2*A+1/2*A^2 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 ### Computing asymptotic complexity ### 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Fully simplified ITS problem 3.89/2.06 3.89/2.06 Start location: start 3.89/2.06 3.89/2.06 8: start -> eval1 : A'=0, B'=1, [ A>=1 ], cost: 1+5/2*A+1/2*A^2 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Computing asymptotic complexity for rule 8 3.89/2.06 3.89/2.06 Solved the limit problem by the following transformations: 3.89/2.06 3.89/2.06 Created initial limit problem: 3.89/2.06 3.89/2.06 1+5/2*A+1/2*A^2 (+), A (+/+!) [not solved] 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 removing all constraints (solved by SMT) 3.89/2.06 3.89/2.06 resulting limit problem: [solved] 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 applying transformation rule (C) using substitution {A==n} 3.89/2.06 3.89/2.06 resulting limit problem: 3.89/2.06 3.89/2.06 [solved] 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Solution: 3.89/2.06 3.89/2.06 A / n 3.89/2.06 3.89/2.06 Resulting cost 1+1/2*n^2+5/2*n has complexity: Poly(n^2) 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Found new complexity Poly(n^2). 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 Obtained the following overall complexity (w.r.t. the length of the input n): 3.89/2.06 3.89/2.06 Complexity: Poly(n^2) 3.89/2.06 3.89/2.06 Cpx degree: 2 3.89/2.06 3.89/2.06 Solved cost: 1+1/2*n^2+5/2*n 3.89/2.06 3.89/2.06 Rule cost: 1+5/2*A+1/2*A^2 3.89/2.06 3.89/2.06 Rule guard: [ A>=1 ] 3.89/2.06 3.89/2.06 3.89/2.06 3.89/2.06 WORST_CASE(Omega(n^2),?) 3.89/2.06 3.89/2.06 3.89/2.06 ---------------------------------------- 3.89/2.06 3.89/2.06 (4) 3.89/2.06 BOUNDS(n^2, INF) 4.14/2.07 EOF