4.82/2.37 WORST_CASE(Omega(n^1), O(n^1)) 5.00/2.38 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 5.00/2.38 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.00/2.38 5.00/2.38 5.00/2.38 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 5.00/2.38 5.00/2.38 (0) CpxIntTrs 5.00/2.38 (1) Koat Proof [FINISHED, 129 ms] 5.00/2.38 (2) BOUNDS(1, n^1) 5.00/2.38 (3) Loat Proof [FINISHED, 629 ms] 5.00/2.38 (4) BOUNDS(n^1, INF) 5.00/2.38 5.00/2.38 5.00/2.38 ---------------------------------------- 5.00/2.38 5.00/2.38 (0) 5.00/2.38 Obligation: 5.00/2.38 Complexity Int TRS consisting of the following rules: 5.00/2.38 eval_start_start(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_bb0_in(v_1, v_n, v_x_0, v_x_1)) :|: TRUE 5.00/2.38 eval_start_bb0_in(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_0(v_1, v_n, v_x_0, v_x_1)) :|: TRUE 5.00/2.38 eval_start_0(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_1(v_1, v_n, v_x_0, v_x_1)) :|: TRUE 5.00/2.38 eval_start_1(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_2(v_1, v_n, v_x_0, v_x_1)) :|: TRUE 5.00/2.38 eval_start_2(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_3(v_1, v_n, v_x_0, v_x_1)) :|: TRUE 5.00/2.38 eval_start_3(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_bb1_in(v_1, v_n, 0, v_x_1)) :|: TRUE 5.00/2.38 eval_start_bb1_in(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_bb2_in(v_1, v_n, v_x_0, v_x_1)) :|: v_x_0 < v_n 5.00/2.38 eval_start_bb1_in(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_bb4_in(v_1, v_n, v_x_0, v_x_0)) :|: v_x_0 >= v_n 5.00/2.38 eval_start_bb2_in(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_4(v_1, v_n, v_x_0, v_x_1)) :|: TRUE 5.00/2.38 eval_start_4(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_5(nondef_0, v_n, v_x_0, v_x_1)) :|: TRUE 5.00/2.38 eval_start_5(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_bb4_in(v_1, v_n, v_x_0, v_x_0)) :|: v_1 > 0 5.00/2.38 eval_start_5(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_bb3_in(v_1, v_n, v_x_0, v_x_1)) :|: v_1 <= 0 5.00/2.38 eval_start_bb3_in(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_bb1_in(v_1, v_n, v_x_0 + 1, v_x_1)) :|: TRUE 5.00/2.38 eval_start_bb4_in(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_bb5_in(v_1, v_n, v_x_0, v_x_1)) :|: v_x_1 < v_n 5.00/2.38 eval_start_bb4_in(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_bb6_in(v_1, v_n, v_x_0, v_x_1)) :|: v_x_1 >= v_n 5.00/2.38 eval_start_bb5_in(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_bb4_in(v_1, v_n, v_x_0, v_x_1 + 1)) :|: TRUE 5.00/2.38 eval_start_bb6_in(v_1, v_n, v_x_0, v_x_1) -> Com_1(eval_start_stop(v_1, v_n, v_x_0, v_x_1)) :|: TRUE 5.00/2.38 5.00/2.38 The start-symbols are:[eval_start_start_4] 5.00/2.38 5.00/2.38 5.00/2.38 ---------------------------------------- 5.00/2.38 5.00/2.38 (1) Koat Proof (FINISHED) 5.00/2.38 YES(?, 7*ar_1 + 32) 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Initial complexity problem: 5.00/2.38 5.00/2.38 1: T: 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 + 1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_0 >= ar_1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, e)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_3 >= 1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_3 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 + 1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb6in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2 + 1, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb6in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.00/2.38 5.00/2.38 start location: koat_start 5.00/2.38 5.00/2.38 leaf cost: 0 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Repeatedly propagating knowledge in problem 1 produces the following problem: 5.00/2.38 5.00/2.38 2: T: 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 + 1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_0 >= ar_1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, e)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_3 >= 1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_3 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 + 1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb6in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2 + 1, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb6in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.00/2.38 5.00/2.38 start location: koat_start 5.00/2.38 5.00/2.38 leaf cost: 0 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 A polynomial rank function with 5.00/2.38 5.00/2.38 Pol(evalstartstart) = 3 5.00/2.38 5.00/2.38 Pol(evalstartbb0in) = 3 5.00/2.38 5.00/2.38 Pol(evalstart0) = 3 5.00/2.38 5.00/2.38 Pol(evalstart1) = 3 5.00/2.38 5.00/2.38 Pol(evalstart2) = 3 5.00/2.38 5.00/2.38 Pol(evalstart3) = 3 5.00/2.38 5.00/2.38 Pol(evalstartbb1in) = 3 5.00/2.38 5.00/2.38 Pol(evalstartbb2in) = 3 5.00/2.38 5.00/2.38 Pol(evalstartbb4in) = 2 5.00/2.38 5.00/2.38 Pol(evalstart4) = 3 5.00/2.38 5.00/2.38 Pol(evalstart5) = 3 5.00/2.38 5.00/2.38 Pol(evalstartbb3in) = 3 5.00/2.38 5.00/2.38 Pol(evalstartbb5in) = 2 5.00/2.38 5.00/2.38 Pol(evalstartbb6in) = 1 5.00/2.38 5.00/2.38 Pol(evalstartstop) = 0 5.00/2.38 5.00/2.38 Pol(koat_start) = 3 5.00/2.38 5.00/2.38 orients all transitions weakly and the transitions 5.00/2.38 5.00/2.38 evalstartbb6in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb6in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 ] 5.00/2.38 5.00/2.38 evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_0 >= ar_1 ] 5.00/2.38 5.00/2.38 evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_3 >= 1 ] 5.00/2.38 5.00/2.38 strictly and produces the following problem: 5.00/2.38 5.00/2.38 3: T: 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 + 1 ] 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_0 >= ar_1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, e)) 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_3 >= 1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_3 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 + 1 ] 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb6in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2 + 1, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstartbb6in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.00/2.38 5.00/2.38 start location: koat_start 5.00/2.38 5.00/2.38 leaf cost: 0 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 A polynomial rank function with 5.00/2.38 5.00/2.38 Pol(evalstartstart) = V_2 + 2 5.00/2.38 5.00/2.38 Pol(evalstartbb0in) = V_2 + 2 5.00/2.38 5.00/2.38 Pol(evalstart0) = V_2 + 2 5.00/2.38 5.00/2.38 Pol(evalstart1) = V_2 + 2 5.00/2.38 5.00/2.38 Pol(evalstart2) = V_2 + 2 5.00/2.38 5.00/2.38 Pol(evalstart3) = V_2 + 2 5.00/2.38 5.00/2.38 Pol(evalstartbb1in) = -V_1 + V_2 + 2 5.00/2.38 5.00/2.38 Pol(evalstartbb2in) = -V_1 + V_2 + 1 5.00/2.38 5.00/2.38 Pol(evalstartbb4in) = V_2 - V_3 + 1 5.00/2.38 5.00/2.38 Pol(evalstart4) = -V_1 + V_2 + 1 5.00/2.38 5.00/2.38 Pol(evalstart5) = -V_1 + V_2 + 1 5.00/2.38 5.00/2.38 Pol(evalstartbb3in) = -V_1 + V_2 + 1 5.00/2.38 5.00/2.38 Pol(evalstartbb5in) = V_2 - V_3 5.00/2.38 5.00/2.38 Pol(evalstartbb6in) = V_2 - V_3 5.00/2.38 5.00/2.38 Pol(evalstartstop) = V_2 - V_3 5.00/2.38 5.00/2.38 Pol(koat_start) = V_2 + 2 5.00/2.38 5.00/2.38 orients all transitions weakly and the transitions 5.00/2.38 5.00/2.38 evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 + 1 ] 5.00/2.38 5.00/2.38 evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 + 1 ] 5.00/2.38 5.00/2.38 strictly and produces the following problem: 5.00/2.38 5.00/2.38 4: T: 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ar_1 + 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 + 1 ] 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_0 >= ar_1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, e)) 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_3 >= 1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_3 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ar_1 + 2, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 + 1 ] 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb6in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 ] 5.00/2.38 5.00/2.38 (Comp: ?, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2 + 1, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstartbb6in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.00/2.38 5.00/2.38 start location: koat_start 5.00/2.38 5.00/2.38 leaf cost: 0 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Repeatedly propagating knowledge in problem 4 produces the following problem: 5.00/2.38 5.00/2.38 5: T: 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ar_1 + 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_0 + 1 ] 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_0 >= ar_1 ] 5.00/2.38 5.00/2.38 (Comp: ar_1 + 2, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ar_1 + 2, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, e)) 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_0, ar_3)) [ ar_3 >= 1 ] 5.00/2.38 5.00/2.38 (Comp: ar_1 + 2, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ 0 >= ar_3 ] 5.00/2.38 5.00/2.38 (Comp: ar_1 + 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: ar_1 + 2, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 + 1 ] 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb6in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_1 ] 5.00/2.38 5.00/2.38 (Comp: ar_1 + 2, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2 + 1, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 3, Cost: 1) evalstartbb6in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 5.00/2.38 5.00/2.38 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 5.00/2.38 5.00/2.38 start location: koat_start 5.00/2.38 5.00/2.38 leaf cost: 0 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Complexity upper bound 7*ar_1 + 32 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Time: 0.144 sec (SMT: 0.121 sec) 5.00/2.38 5.00/2.38 5.00/2.38 ---------------------------------------- 5.00/2.38 5.00/2.38 (2) 5.00/2.38 BOUNDS(1, n^1) 5.00/2.38 5.00/2.38 ---------------------------------------- 5.00/2.38 5.00/2.38 (3) Loat Proof (FINISHED) 5.00/2.38 5.00/2.38 5.00/2.38 ### Pre-processing the ITS problem ### 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Initial linear ITS problem 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 0: evalstartstart -> evalstartbb0in : [], cost: 1 5.00/2.38 5.00/2.38 1: evalstartbb0in -> evalstart0 : [], cost: 1 5.00/2.38 5.00/2.38 2: evalstart0 -> evalstart1 : [], cost: 1 5.00/2.38 5.00/2.38 3: evalstart1 -> evalstart2 : [], cost: 1 5.00/2.38 5.00/2.38 4: evalstart2 -> evalstart3 : [], cost: 1 5.00/2.38 5.00/2.38 5: evalstart3 -> evalstartbb1in : A'=0, [], cost: 1 5.00/2.38 5.00/2.38 6: evalstartbb1in -> evalstartbb2in : [ B>=1+A ], cost: 1 5.00/2.38 5.00/2.38 7: evalstartbb1in -> evalstartbb4in : C'=A, [ A>=B ], cost: 1 5.00/2.38 5.00/2.38 8: evalstartbb2in -> evalstart4 : [], cost: 1 5.00/2.38 5.00/2.38 9: evalstart4 -> evalstart5 : D'=free, [], cost: 1 5.00/2.38 5.00/2.38 10: evalstart5 -> evalstartbb4in : C'=A, [ D>=1 ], cost: 1 5.00/2.38 5.00/2.38 11: evalstart5 -> evalstartbb3in : [ 0>=D ], cost: 1 5.00/2.38 5.00/2.38 12: evalstartbb3in -> evalstartbb1in : A'=1+A, [], cost: 1 5.00/2.38 5.00/2.38 13: evalstartbb4in -> evalstartbb5in : [ B>=1+C ], cost: 1 5.00/2.38 5.00/2.38 14: evalstartbb4in -> evalstartbb6in : [ C>=B ], cost: 1 5.00/2.38 5.00/2.38 15: evalstartbb5in -> evalstartbb4in : C'=1+C, [], cost: 1 5.00/2.38 5.00/2.38 16: evalstartbb6in -> evalstartstop : [], cost: 1 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Removed unreachable and leaf rules: 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 0: evalstartstart -> evalstartbb0in : [], cost: 1 5.00/2.38 5.00/2.38 1: evalstartbb0in -> evalstart0 : [], cost: 1 5.00/2.38 5.00/2.38 2: evalstart0 -> evalstart1 : [], cost: 1 5.00/2.38 5.00/2.38 3: evalstart1 -> evalstart2 : [], cost: 1 5.00/2.38 5.00/2.38 4: evalstart2 -> evalstart3 : [], cost: 1 5.00/2.38 5.00/2.38 5: evalstart3 -> evalstartbb1in : A'=0, [], cost: 1 5.00/2.38 5.00/2.38 6: evalstartbb1in -> evalstartbb2in : [ B>=1+A ], cost: 1 5.00/2.38 5.00/2.38 7: evalstartbb1in -> evalstartbb4in : C'=A, [ A>=B ], cost: 1 5.00/2.38 5.00/2.38 8: evalstartbb2in -> evalstart4 : [], cost: 1 5.00/2.38 5.00/2.38 9: evalstart4 -> evalstart5 : D'=free, [], cost: 1 5.00/2.38 5.00/2.38 10: evalstart5 -> evalstartbb4in : C'=A, [ D>=1 ], cost: 1 5.00/2.38 5.00/2.38 11: evalstart5 -> evalstartbb3in : [ 0>=D ], cost: 1 5.00/2.38 5.00/2.38 12: evalstartbb3in -> evalstartbb1in : A'=1+A, [], cost: 1 5.00/2.38 5.00/2.38 13: evalstartbb4in -> evalstartbb5in : [ B>=1+C ], cost: 1 5.00/2.38 5.00/2.38 15: evalstartbb5in -> evalstartbb4in : C'=1+C, [], cost: 1 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 ### Simplification by acceleration and chaining ### 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Eliminated locations (on linear paths): 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 21: evalstartstart -> evalstartbb1in : A'=0, [], cost: 6 5.00/2.38 5.00/2.38 7: evalstartbb1in -> evalstartbb4in : C'=A, [ A>=B ], cost: 1 5.00/2.38 5.00/2.38 23: evalstartbb1in -> evalstart5 : D'=free, [ B>=1+A ], cost: 3 5.00/2.38 5.00/2.38 10: evalstart5 -> evalstartbb4in : C'=A, [ D>=1 ], cost: 1 5.00/2.38 5.00/2.38 24: evalstart5 -> evalstartbb1in : A'=1+A, [ 0>=D ], cost: 2 5.00/2.38 5.00/2.38 25: evalstartbb4in -> evalstartbb4in : C'=1+C, [ B>=1+C ], cost: 2 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Accelerating simple loops of location 11. 5.00/2.38 5.00/2.38 Accelerating the following rules: 5.00/2.38 5.00/2.38 25: evalstartbb4in -> evalstartbb4in : C'=1+C, [ B>=1+C ], cost: 2 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Accelerated rule 25 with metering function -C+B, yielding the new rule 26. 5.00/2.38 5.00/2.38 Removing the simple loops: 25. 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Accelerated all simple loops using metering functions (where possible): 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 21: evalstartstart -> evalstartbb1in : A'=0, [], cost: 6 5.00/2.38 5.00/2.38 7: evalstartbb1in -> evalstartbb4in : C'=A, [ A>=B ], cost: 1 5.00/2.38 5.00/2.38 23: evalstartbb1in -> evalstart5 : D'=free, [ B>=1+A ], cost: 3 5.00/2.38 5.00/2.38 10: evalstart5 -> evalstartbb4in : C'=A, [ D>=1 ], cost: 1 5.00/2.38 5.00/2.38 24: evalstart5 -> evalstartbb1in : A'=1+A, [ 0>=D ], cost: 2 5.00/2.38 5.00/2.38 26: evalstartbb4in -> evalstartbb4in : C'=B, [ B>=1+C ], cost: -2*C+2*B 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Chained accelerated rules (with incoming rules): 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 21: evalstartstart -> evalstartbb1in : A'=0, [], cost: 6 5.00/2.38 5.00/2.38 7: evalstartbb1in -> evalstartbb4in : C'=A, [ A>=B ], cost: 1 5.00/2.38 5.00/2.38 23: evalstartbb1in -> evalstart5 : D'=free, [ B>=1+A ], cost: 3 5.00/2.38 5.00/2.38 10: evalstart5 -> evalstartbb4in : C'=A, [ D>=1 ], cost: 1 5.00/2.38 5.00/2.38 24: evalstart5 -> evalstartbb1in : A'=1+A, [ 0>=D ], cost: 2 5.00/2.38 5.00/2.38 27: evalstart5 -> evalstartbb4in : C'=B, [ D>=1 && B>=1+A ], cost: 1-2*A+2*B 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Removed unreachable locations (and leaf rules with constant cost): 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 21: evalstartstart -> evalstartbb1in : A'=0, [], cost: 6 5.00/2.38 5.00/2.38 23: evalstartbb1in -> evalstart5 : D'=free, [ B>=1+A ], cost: 3 5.00/2.38 5.00/2.38 24: evalstart5 -> evalstartbb1in : A'=1+A, [ 0>=D ], cost: 2 5.00/2.38 5.00/2.38 27: evalstart5 -> evalstartbb4in : C'=B, [ D>=1 && B>=1+A ], cost: 1-2*A+2*B 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Eliminated locations (on tree-shaped paths): 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 21: evalstartstart -> evalstartbb1in : A'=0, [], cost: 6 5.00/2.38 5.00/2.38 28: evalstartbb1in -> evalstartbb1in : A'=1+A, D'=free, [ B>=1+A && 0>=free ], cost: 5 5.00/2.38 5.00/2.38 29: evalstartbb1in -> evalstartbb4in : C'=B, D'=free, [ B>=1+A && free>=1 ], cost: 4-2*A+2*B 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Accelerating simple loops of location 6. 5.00/2.38 5.00/2.38 Accelerating the following rules: 5.00/2.38 5.00/2.38 28: evalstartbb1in -> evalstartbb1in : A'=1+A, D'=free, [ B>=1+A && 0>=free ], cost: 5 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Accelerated rule 28 with metering function -A+B, yielding the new rule 30. 5.00/2.38 5.00/2.38 Removing the simple loops: 28. 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Accelerated all simple loops using metering functions (where possible): 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 21: evalstartstart -> evalstartbb1in : A'=0, [], cost: 6 5.00/2.38 5.00/2.38 29: evalstartbb1in -> evalstartbb4in : C'=B, D'=free, [ B>=1+A && free>=1 ], cost: 4-2*A+2*B 5.00/2.38 5.00/2.38 30: evalstartbb1in -> evalstartbb1in : A'=B, D'=free, [ B>=1+A && 0>=free ], cost: -5*A+5*B 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Chained accelerated rules (with incoming rules): 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 21: evalstartstart -> evalstartbb1in : A'=0, [], cost: 6 5.00/2.38 5.00/2.38 31: evalstartstart -> evalstartbb1in : A'=B, D'=free, [ B>=1 && 0>=free ], cost: 6+5*B 5.00/2.38 5.00/2.38 29: evalstartbb1in -> evalstartbb4in : C'=B, D'=free, [ B>=1+A && free>=1 ], cost: 4-2*A+2*B 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Eliminated locations (on tree-shaped paths): 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 32: evalstartstart -> evalstartbb4in : A'=0, C'=B, D'=free, [ B>=1 && free>=1 ], cost: 10+2*B 5.00/2.38 5.00/2.38 33: evalstartstart -> [17] : [ B>=1 && 0>=free ], cost: 6+5*B 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 ### Computing asymptotic complexity ### 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Fully simplified ITS problem 5.00/2.38 5.00/2.38 Start location: evalstartstart 5.00/2.38 5.00/2.38 32: evalstartstart -> evalstartbb4in : A'=0, C'=B, D'=free, [ B>=1 && free>=1 ], cost: 10+2*B 5.00/2.38 5.00/2.38 33: evalstartstart -> [17] : [ B>=1 && 0>=free ], cost: 6+5*B 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Computing asymptotic complexity for rule 32 5.00/2.38 5.00/2.38 Solved the limit problem by the following transformations: 5.00/2.38 5.00/2.38 Created initial limit problem: 5.00/2.38 5.00/2.38 free (+/+!), 10+2*B (+), B (+/+!) [not solved] 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 removing all constraints (solved by SMT) 5.00/2.38 5.00/2.38 resulting limit problem: [solved] 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 applying transformation rule (C) using substitution {free==1,B==n} 5.00/2.38 5.00/2.38 resulting limit problem: 5.00/2.38 5.00/2.38 [solved] 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Solution: 5.00/2.38 5.00/2.38 free / 1 5.00/2.38 5.00/2.38 B / n 5.00/2.38 5.00/2.38 Resulting cost 10+2*n has complexity: Poly(n^1) 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Found new complexity Poly(n^1). 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 Obtained the following overall complexity (w.r.t. the length of the input n): 5.00/2.38 5.00/2.38 Complexity: Poly(n^1) 5.00/2.38 5.00/2.38 Cpx degree: 1 5.00/2.38 5.00/2.38 Solved cost: 10+2*n 5.00/2.38 5.00/2.38 Rule cost: 10+2*B 5.00/2.38 5.00/2.38 Rule guard: [ B>=1 && free>=1 ] 5.00/2.38 5.00/2.38 5.00/2.38 5.00/2.38 WORST_CASE(Omega(n^1),?) 5.00/2.38 5.00/2.38 5.00/2.38 ---------------------------------------- 5.00/2.38 5.00/2.38 (4) 5.00/2.38 BOUNDS(n^1, INF) 5.02/2.40 EOF