5.46/2.62 WORST_CASE(Omega(n^1), O(n^1)) 5.46/2.63 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 5.46/2.63 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.46/2.63 5.46/2.63 5.46/2.63 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 5.46/2.63 5.46/2.63 (0) CpxIntTrs 5.46/2.63 (1) Koat Proof [FINISHED, 127 ms] 5.46/2.63 (2) BOUNDS(1, n^1) 5.46/2.63 (3) Loat Proof [FINISHED, 937 ms] 5.46/2.63 (4) BOUNDS(n^1, INF) 5.46/2.63 5.46/2.63 5.46/2.63 ---------------------------------------- 5.46/2.63 5.46/2.63 (0) 5.46/2.63 Obligation: 5.46/2.63 Complexity Int TRS consisting of the following rules: 5.46/2.63 eval_start_start(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_bb0_in(v__0, v__0_sink, v_1, v_3, v_n)) :|: TRUE 5.46/2.63 eval_start_bb0_in(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_0(v__0, v__0_sink, v_1, v_3, v_n)) :|: TRUE 5.46/2.63 eval_start_0(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_1(v__0, v__0_sink, v_1, v_3, v_n)) :|: TRUE 5.46/2.63 eval_start_1(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_2(v__0, v__0_sink, v_1, v_3, v_n)) :|: TRUE 5.46/2.63 eval_start_2(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_bb1_in(v_n, v__0_sink, v_1, v_3, v_n)) :|: TRUE 5.46/2.63 eval_start_bb1_in(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_bb2_in(v__0, v__0, v_1, v_3, v_n)) :|: v__0 > 0 5.46/2.63 eval_start_bb1_in(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_bb4_in(v__0, v__0_sink, v_1, v_3, v_n)) :|: v__0 <= 0 5.46/2.63 eval_start_bb2_in(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_bb3_in(v__0, v__0_sink, v__0_sink - 1, v_3, v_n)) :|: v__0_sink - 1 > 0 5.46/2.63 eval_start_bb2_in(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_bb1_in(v__0_sink - 1, v__0_sink, v_1, v_3, v_n)) :|: v__0_sink - 1 <= 0 5.46/2.63 eval_start_bb3_in(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_5(v__0, v__0_sink, v_1, v_3, v_n)) :|: TRUE 5.46/2.63 eval_start_5(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_6(v__0, v__0_sink, v_1, nondef_0, v_n)) :|: TRUE 5.46/2.63 eval_start_6(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_bb1_in(v_1, v__0_sink, v_1, v_3, v_n)) :|: v_3 > 0 5.46/2.63 eval_start_6(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_bb2_in(v__0, v_1, v_1, v_3, v_n)) :|: v_3 <= 0 5.46/2.63 eval_start_bb4_in(v__0, v__0_sink, v_1, v_3, v_n) -> Com_1(eval_start_stop(v__0, v__0_sink, v_1, v_3, v_n)) :|: TRUE 5.46/2.63 5.46/2.63 The start-symbols are:[eval_start_start_5] 5.46/2.63 5.46/2.63 5.46/2.63 ---------------------------------------- 5.46/2.63 5.46/2.63 (1) Koat Proof (FINISHED) 5.46/2.63 YES(?, 16*ar_1 + 9) 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Initial complexity problem: 5.46/2.63 5.46/2.63 1: T: 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_0, ar_3, ar_4)) [ ar_0 >= 1 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 >= ar_0 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_2 - 1, ar_4)) [ ar_2 >= 2 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_2 - 1, ar_1, ar_2, ar_3, ar_4)) [ 1 >= ar_2 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3, f)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_3, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= 1 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_3, ar_3, ar_4)) [ 0 >= ar_4 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 5.46/2.63 5.46/2.63 start location: koat_start 5.46/2.63 5.46/2.63 leaf cost: 0 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Repeatedly propagating knowledge in problem 1 produces the following problem: 5.46/2.63 5.46/2.63 2: T: 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_0, ar_3, ar_4)) [ ar_0 >= 1 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 >= ar_0 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_2 - 1, ar_4)) [ ar_2 >= 2 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_2 - 1, ar_1, ar_2, ar_3, ar_4)) [ 1 >= ar_2 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3, f)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_3, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= 1 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_3, ar_3, ar_4)) [ 0 >= ar_4 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 5.46/2.63 5.46/2.63 start location: koat_start 5.46/2.63 5.46/2.63 leaf cost: 0 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 A polynomial rank function with 5.46/2.63 5.46/2.63 Pol(evalstartstart) = 2 5.46/2.63 5.46/2.63 Pol(evalstartbb0in) = 2 5.46/2.63 5.46/2.63 Pol(evalstart0) = 2 5.46/2.63 5.46/2.63 Pol(evalstart1) = 2 5.46/2.63 5.46/2.63 Pol(evalstart2) = 2 5.46/2.63 5.46/2.63 Pol(evalstartbb1in) = 2 5.46/2.63 5.46/2.63 Pol(evalstartbb2in) = 2 5.46/2.63 5.46/2.63 Pol(evalstartbb4in) = 1 5.46/2.63 5.46/2.63 Pol(evalstartbb3in) = 2 5.46/2.63 5.46/2.63 Pol(evalstart5) = 2 5.46/2.63 5.46/2.63 Pol(evalstart6) = 2 5.46/2.63 5.46/2.63 Pol(evalstartstop) = 0 5.46/2.63 5.46/2.63 Pol(koat_start) = 2 5.46/2.63 5.46/2.63 orients all transitions weakly and the transitions 5.46/2.63 5.46/2.63 evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 >= ar_0 ] 5.46/2.63 5.46/2.63 strictly and produces the following problem: 5.46/2.63 5.46/2.63 3: T: 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_0, ar_3, ar_4)) [ ar_0 >= 1 ] 5.46/2.63 5.46/2.63 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 >= ar_0 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_2 - 1, ar_4)) [ ar_2 >= 2 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_2 - 1, ar_1, ar_2, ar_3, ar_4)) [ 1 >= ar_2 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3, f)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_3, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= 1 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_3, ar_3, ar_4)) [ 0 >= ar_4 ] 5.46/2.63 5.46/2.63 (Comp: 2, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 5.46/2.63 5.46/2.63 start location: koat_start 5.46/2.63 5.46/2.63 leaf cost: 0 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 A polynomial rank function with 5.46/2.63 5.46/2.63 Pol(evalstartstart) = 2*V_2 5.46/2.63 5.46/2.63 Pol(evalstartbb0in) = 2*V_2 5.46/2.63 5.46/2.63 Pol(evalstart0) = 2*V_2 5.46/2.63 5.46/2.63 Pol(evalstart1) = 2*V_2 5.46/2.63 5.46/2.63 Pol(evalstart2) = 2*V_2 5.46/2.63 5.46/2.63 Pol(evalstartbb1in) = 2*V_1 5.46/2.63 5.46/2.63 Pol(evalstartbb2in) = 2*V_3 - 1 5.46/2.63 5.46/2.63 Pol(evalstartbb4in) = 2*V_1 5.46/2.63 5.46/2.63 Pol(evalstartbb3in) = 2*V_4 5.46/2.63 5.46/2.63 Pol(evalstart5) = 2*V_4 5.46/2.63 5.46/2.63 Pol(evalstart6) = 2*V_4 5.46/2.63 5.46/2.63 Pol(evalstartstop) = 2*V_1 5.46/2.63 5.46/2.63 Pol(koat_start) = 2*V_2 5.46/2.63 5.46/2.63 orients all transitions weakly and the transitions 5.46/2.63 5.46/2.63 evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_2 - 1, ar_4)) [ ar_2 >= 2 ] 5.46/2.63 5.46/2.63 evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_0, ar_3, ar_4)) [ ar_0 >= 1 ] 5.46/2.63 5.46/2.63 strictly and produces the following problem: 5.46/2.63 5.46/2.63 4: T: 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 2*ar_1, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_0, ar_3, ar_4)) [ ar_0 >= 1 ] 5.46/2.63 5.46/2.63 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 >= ar_0 ] 5.46/2.63 5.46/2.63 (Comp: 2*ar_1, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_2 - 1, ar_4)) [ ar_2 >= 2 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_2 - 1, ar_1, ar_2, ar_3, ar_4)) [ 1 >= ar_2 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3, f)) 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_3, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= 1 ] 5.46/2.63 5.46/2.63 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_3, ar_3, ar_4)) [ 0 >= ar_4 ] 5.46/2.63 5.46/2.63 (Comp: 2, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 5.46/2.63 5.46/2.63 start location: koat_start 5.46/2.63 5.46/2.63 leaf cost: 0 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Repeatedly propagating knowledge in problem 4 produces the following problem: 5.46/2.63 5.46/2.63 5: T: 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_1, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 2*ar_1, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_0, ar_3, ar_4)) [ ar_0 >= 1 ] 5.46/2.63 5.46/2.63 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 >= ar_0 ] 5.46/2.63 5.46/2.63 (Comp: 2*ar_1, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_2 - 1, ar_4)) [ ar_2 >= 2 ] 5.46/2.63 5.46/2.63 (Comp: 4*ar_1, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_2 - 1, ar_1, ar_2, ar_3, ar_4)) [ 1 >= ar_2 ] 5.46/2.63 5.46/2.63 (Comp: 2*ar_1, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 2*ar_1, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3, f)) 5.46/2.63 5.46/2.63 (Comp: 2*ar_1, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb1in(ar_3, ar_1, ar_2, ar_3, ar_4)) [ ar_4 >= 1 ] 5.46/2.63 5.46/2.63 (Comp: 2*ar_1, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_3, ar_3, ar_4)) [ 0 >= ar_4 ] 5.46/2.63 5.46/2.63 (Comp: 2, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3, ar_4)) 5.46/2.63 5.46/2.63 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 5.46/2.63 5.46/2.63 start location: koat_start 5.46/2.63 5.46/2.63 leaf cost: 0 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Complexity upper bound 16*ar_1 + 9 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Time: 0.160 sec (SMT: 0.135 sec) 5.46/2.63 5.46/2.63 5.46/2.63 ---------------------------------------- 5.46/2.63 5.46/2.63 (2) 5.46/2.63 BOUNDS(1, n^1) 5.46/2.63 5.46/2.63 ---------------------------------------- 5.46/2.63 5.46/2.63 (3) Loat Proof (FINISHED) 5.46/2.63 5.46/2.63 5.46/2.63 ### Pre-processing the ITS problem ### 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Initial linear ITS problem 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 0: evalstartstart -> evalstartbb0in : [], cost: 1 5.46/2.63 5.46/2.63 1: evalstartbb0in -> evalstart0 : [], cost: 1 5.46/2.63 5.46/2.63 2: evalstart0 -> evalstart1 : [], cost: 1 5.46/2.63 5.46/2.63 3: evalstart1 -> evalstart2 : [], cost: 1 5.46/2.63 5.46/2.63 4: evalstart2 -> evalstartbb1in : A'=B, [], cost: 1 5.46/2.63 5.46/2.63 5: evalstartbb1in -> evalstartbb2in : C'=A, [ A>=1 ], cost: 1 5.46/2.63 5.46/2.63 6: evalstartbb1in -> evalstartbb4in : [ 0>=A ], cost: 1 5.46/2.63 5.46/2.63 7: evalstartbb2in -> evalstartbb3in : D'=-1+C, [ C>=2 ], cost: 1 5.46/2.63 5.46/2.63 8: evalstartbb2in -> evalstartbb1in : A'=-1+C, [ 1>=C ], cost: 1 5.46/2.63 5.46/2.63 9: evalstartbb3in -> evalstart5 : [], cost: 1 5.46/2.63 5.46/2.63 10: evalstart5 -> evalstart6 : E'=free, [], cost: 1 5.46/2.63 5.46/2.63 11: evalstart6 -> evalstartbb1in : A'=D, [ E>=1 ], cost: 1 5.46/2.63 5.46/2.63 12: evalstart6 -> evalstartbb2in : C'=D, [ 0>=E ], cost: 1 5.46/2.63 5.46/2.63 13: evalstartbb4in -> evalstartstop : [], cost: 1 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Removed unreachable and leaf rules: 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 0: evalstartstart -> evalstartbb0in : [], cost: 1 5.46/2.63 5.46/2.63 1: evalstartbb0in -> evalstart0 : [], cost: 1 5.46/2.63 5.46/2.63 2: evalstart0 -> evalstart1 : [], cost: 1 5.46/2.63 5.46/2.63 3: evalstart1 -> evalstart2 : [], cost: 1 5.46/2.63 5.46/2.63 4: evalstart2 -> evalstartbb1in : A'=B, [], cost: 1 5.46/2.63 5.46/2.63 5: evalstartbb1in -> evalstartbb2in : C'=A, [ A>=1 ], cost: 1 5.46/2.63 5.46/2.63 7: evalstartbb2in -> evalstartbb3in : D'=-1+C, [ C>=2 ], cost: 1 5.46/2.63 5.46/2.63 8: evalstartbb2in -> evalstartbb1in : A'=-1+C, [ 1>=C ], cost: 1 5.46/2.63 5.46/2.63 9: evalstartbb3in -> evalstart5 : [], cost: 1 5.46/2.63 5.46/2.63 10: evalstart5 -> evalstart6 : E'=free, [], cost: 1 5.46/2.63 5.46/2.63 11: evalstart6 -> evalstartbb1in : A'=D, [ E>=1 ], cost: 1 5.46/2.63 5.46/2.63 12: evalstart6 -> evalstartbb2in : C'=D, [ 0>=E ], cost: 1 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 ### Simplification by acceleration and chaining ### 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Eliminated locations (on linear paths): 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 5 5.46/2.63 5.46/2.63 5: evalstartbb1in -> evalstartbb2in : C'=A, [ A>=1 ], cost: 1 5.46/2.63 5.46/2.63 8: evalstartbb2in -> evalstartbb1in : A'=-1+C, [ 1>=C ], cost: 1 5.46/2.63 5.46/2.63 19: evalstartbb2in -> evalstart6 : D'=-1+C, E'=free, [ C>=2 ], cost: 3 5.46/2.63 5.46/2.63 11: evalstart6 -> evalstartbb1in : A'=D, [ E>=1 ], cost: 1 5.46/2.63 5.46/2.63 12: evalstart6 -> evalstartbb2in : C'=D, [ 0>=E ], cost: 1 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Eliminated locations (on tree-shaped paths): 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 5 5.46/2.63 5.46/2.63 5: evalstartbb1in -> evalstartbb2in : C'=A, [ A>=1 ], cost: 1 5.46/2.63 5.46/2.63 8: evalstartbb2in -> evalstartbb1in : A'=-1+C, [ 1>=C ], cost: 1 5.46/2.63 5.46/2.63 20: evalstartbb2in -> evalstartbb1in : A'=-1+C, D'=-1+C, E'=free, [ C>=2 && free>=1 ], cost: 4 5.46/2.63 5.46/2.63 21: evalstartbb2in -> evalstartbb2in : C'=-1+C, D'=-1+C, E'=free, [ C>=2 && 0>=free ], cost: 4 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Accelerating simple loops of location 6. 5.46/2.63 5.46/2.63 Accelerating the following rules: 5.46/2.63 5.46/2.63 21: evalstartbb2in -> evalstartbb2in : C'=-1+C, D'=-1+C, E'=free, [ C>=2 && 0>=free ], cost: 4 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Accelerated rule 21 with metering function -1+C, yielding the new rule 22. 5.46/2.63 5.46/2.63 Removing the simple loops: 21. 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Accelerated all simple loops using metering functions (where possible): 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 5 5.46/2.63 5.46/2.63 5: evalstartbb1in -> evalstartbb2in : C'=A, [ A>=1 ], cost: 1 5.46/2.63 5.46/2.63 8: evalstartbb2in -> evalstartbb1in : A'=-1+C, [ 1>=C ], cost: 1 5.46/2.63 5.46/2.63 20: evalstartbb2in -> evalstartbb1in : A'=-1+C, D'=-1+C, E'=free, [ C>=2 && free>=1 ], cost: 4 5.46/2.63 5.46/2.63 22: evalstartbb2in -> evalstartbb2in : C'=1, D'=1, E'=free, [ C>=2 && 0>=free ], cost: -4+4*C 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Chained accelerated rules (with incoming rules): 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 5 5.46/2.63 5.46/2.63 5: evalstartbb1in -> evalstartbb2in : C'=A, [ A>=1 ], cost: 1 5.46/2.63 5.46/2.63 23: evalstartbb1in -> evalstartbb2in : C'=1, D'=1, E'=free, [ A>=2 && 0>=free ], cost: -3+4*A 5.46/2.63 5.46/2.63 8: evalstartbb2in -> evalstartbb1in : A'=-1+C, [ 1>=C ], cost: 1 5.46/2.63 5.46/2.63 20: evalstartbb2in -> evalstartbb1in : A'=-1+C, D'=-1+C, E'=free, [ C>=2 && free>=1 ], cost: 4 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Eliminated locations (on tree-shaped paths): 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 5 5.46/2.63 5.46/2.63 24: evalstartbb1in -> evalstartbb1in : A'=-1+A, C'=A, [ A>=1 && 1>=A ], cost: 2 5.46/2.63 5.46/2.63 25: evalstartbb1in -> evalstartbb1in : A'=-1+A, C'=A, D'=-1+A, E'=free, [ A>=2 && free>=1 ], cost: 5 5.46/2.63 5.46/2.63 26: evalstartbb1in -> evalstartbb1in : A'=0, C'=1, D'=1, E'=free, [ A>=2 && 0>=free ], cost: -2+4*A 5.46/2.63 5.46/2.63 27: evalstartbb1in -> [13] : [ A>=2 && 0>=free ], cost: -3+4*A 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Accelerating simple loops of location 5. 5.46/2.63 5.46/2.63 Simplified some of the simple loops (and removed duplicate rules). 5.46/2.63 5.46/2.63 Accelerating the following rules: 5.46/2.63 5.46/2.63 24: evalstartbb1in -> evalstartbb1in : A'=-1+A, C'=A, [ 1-A==0 ], cost: 2 5.46/2.63 5.46/2.63 25: evalstartbb1in -> evalstartbb1in : A'=-1+A, C'=A, D'=-1+A, E'=free, [ A>=2 && free>=1 ], cost: 5 5.46/2.63 5.46/2.63 26: evalstartbb1in -> evalstartbb1in : A'=0, C'=1, D'=1, E'=free, [ A>=2 && 0>=free ], cost: -2+4*A 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Accelerated rule 24 with metering function A, yielding the new rule 28. 5.46/2.63 5.46/2.63 Accelerated rule 25 with metering function -1+A, yielding the new rule 29. 5.46/2.63 5.46/2.63 Found no metering function for rule 26. 5.46/2.63 5.46/2.63 Removing the simple loops: 24 25. 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Accelerated all simple loops using metering functions (where possible): 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 5 5.46/2.63 5.46/2.63 26: evalstartbb1in -> evalstartbb1in : A'=0, C'=1, D'=1, E'=free, [ A>=2 && 0>=free ], cost: -2+4*A 5.46/2.63 5.46/2.63 27: evalstartbb1in -> [13] : [ A>=2 && 0>=free ], cost: -3+4*A 5.46/2.63 5.46/2.63 28: evalstartbb1in -> evalstartbb1in : A'=0, C'=1, [ 1-A==0 ], cost: 2*A 5.46/2.63 5.46/2.63 29: evalstartbb1in -> evalstartbb1in : A'=1, C'=2, D'=1, E'=free, [ A>=2 && free>=1 ], cost: -5+5*A 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Chained accelerated rules (with incoming rules): 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 5 5.46/2.63 5.46/2.63 30: evalstartstart -> evalstartbb1in : A'=0, C'=1, D'=1, E'=free, [ B>=2 && 0>=free ], cost: 3+4*B 5.46/2.63 5.46/2.63 31: evalstartstart -> evalstartbb1in : A'=0, C'=1, [ 1-B==0 ], cost: 5+2*B 5.46/2.63 5.46/2.63 32: evalstartstart -> evalstartbb1in : A'=1, C'=2, D'=1, E'=free, [ B>=2 && free>=1 ], cost: 5*B 5.46/2.63 5.46/2.63 27: evalstartbb1in -> [13] : [ A>=2 && 0>=free ], cost: -3+4*A 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Eliminated locations (on tree-shaped paths): 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 33: evalstartstart -> [13] : A'=B, [ B>=2 && 0>=free ], cost: 2+4*B 5.46/2.63 5.46/2.63 34: evalstartstart -> [15] : [ B>=2 && 0>=free ], cost: 3+4*B 5.46/2.63 5.46/2.63 35: evalstartstart -> [15] : [ 1-B==0 ], cost: 5+2*B 5.46/2.63 5.46/2.63 36: evalstartstart -> [15] : [ B>=2 && free>=1 ], cost: 5*B 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 ### Computing asymptotic complexity ### 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Fully simplified ITS problem 5.46/2.63 5.46/2.63 Start location: evalstartstart 5.46/2.63 5.46/2.63 34: evalstartstart -> [15] : [ B>=2 && 0>=free ], cost: 3+4*B 5.46/2.63 5.46/2.63 35: evalstartstart -> [15] : [ 1-B==0 ], cost: 5+2*B 5.46/2.63 5.46/2.63 36: evalstartstart -> [15] : [ B>=2 && free>=1 ], cost: 5*B 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Computing asymptotic complexity for rule 34 5.46/2.63 5.46/2.63 Solved the limit problem by the following transformations: 5.46/2.63 5.46/2.63 Created initial limit problem: 5.46/2.63 5.46/2.63 1-free (+/+!), -1+B (+/+!), 3+4*B (+) [not solved] 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 removing all constraints (solved by SMT) 5.46/2.63 5.46/2.63 resulting limit problem: [solved] 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 applying transformation rule (C) using substitution {free==0,B==n} 5.46/2.63 5.46/2.63 resulting limit problem: 5.46/2.63 5.46/2.63 [solved] 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Solution: 5.46/2.63 5.46/2.63 free / 0 5.46/2.63 5.46/2.63 B / n 5.46/2.63 5.46/2.63 Resulting cost 3+4*n has complexity: Poly(n^1) 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Found new complexity Poly(n^1). 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 Obtained the following overall complexity (w.r.t. the length of the input n): 5.46/2.63 5.46/2.63 Complexity: Poly(n^1) 5.46/2.63 5.46/2.63 Cpx degree: 1 5.46/2.63 5.46/2.63 Solved cost: 3+4*n 5.46/2.63 5.46/2.63 Rule cost: 3+4*B 5.46/2.63 5.46/2.63 Rule guard: [ B>=2 && 0>=free ] 5.46/2.63 5.46/2.63 5.46/2.63 5.46/2.63 WORST_CASE(Omega(n^1),?) 5.46/2.63 5.46/2.63 5.46/2.63 ---------------------------------------- 5.46/2.63 5.46/2.63 (4) 5.46/2.63 BOUNDS(n^1, INF) 5.46/2.66 EOF