4.56/2.14 WORST_CASE(Omega(n^1), O(n^1)) 4.56/2.15 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.56/2.15 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.56/2.15 4.56/2.15 4.56/2.15 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.56/2.15 4.56/2.15 (0) CpxIntTrs 4.56/2.15 (1) Koat Proof [FINISHED, 24 ms] 4.56/2.15 (2) BOUNDS(1, n^1) 4.56/2.15 (3) Loat Proof [FINISHED, 414 ms] 4.56/2.15 (4) BOUNDS(n^1, INF) 4.56/2.15 4.56/2.15 4.56/2.15 ---------------------------------------- 4.56/2.15 4.56/2.15 (0) 4.56/2.15 Obligation: 4.56/2.15 Complexity Int TRS consisting of the following rules: 4.56/2.15 eval_speedSingleSingle_start(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_bb0_in(v_n, v_x_0)) :|: TRUE 4.56/2.15 eval_speedSingleSingle_bb0_in(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_0(v_n, v_x_0)) :|: TRUE 4.56/2.15 eval_speedSingleSingle_0(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_1(v_n, v_x_0)) :|: TRUE 4.56/2.15 eval_speedSingleSingle_1(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_2(v_n, v_x_0)) :|: TRUE 4.56/2.15 eval_speedSingleSingle_2(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_3(v_n, v_x_0)) :|: TRUE 4.56/2.15 eval_speedSingleSingle_3(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_4(v_n, v_x_0)) :|: TRUE 4.56/2.15 eval_speedSingleSingle_4(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_bb1_in(v_n, 0)) :|: TRUE 4.56/2.15 eval_speedSingleSingle_bb1_in(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_bb2_in(v_n, v_x_0)) :|: v_x_0 < v_n 4.56/2.15 eval_speedSingleSingle_bb1_in(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_bb3_in(v_n, v_x_0)) :|: v_x_0 >= v_n 4.56/2.15 eval_speedSingleSingle_bb2_in(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_5(v_n, v_x_0)) :|: TRUE 4.56/2.15 eval_speedSingleSingle_5(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_6(v_n, v_x_0)) :|: TRUE 4.56/2.15 eval_speedSingleSingle_6(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_bb1_in(v_n, v_x_0 + 1)) :|: TRUE 4.56/2.15 eval_speedSingleSingle_bb3_in(v_n, v_x_0) -> Com_1(eval_speedSingleSingle_stop(v_n, v_x_0)) :|: TRUE 4.56/2.15 4.56/2.15 The start-symbols are:[eval_speedSingleSingle_start_2] 4.56/2.15 4.56/2.15 4.56/2.15 ---------------------------------------- 4.56/2.15 4.56/2.15 (1) Koat Proof (FINISHED) 4.56/2.15 YES(?, 4*ar_1 + 15) 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Initial complexity problem: 4.56/2.15 4.56/2.15 1: T: 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_1(evalspeedSingleSingle1(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSingle2(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle2(ar_0, ar_1) -> Com_1(evalspeedSingleSingle3(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle3(ar_0, ar_1) -> Com_1(evalspeedSingleSingle4(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle4(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle5(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle5(ar_0, ar_1) -> Com_1(evalspeedSingleSingle6(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle6(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] 4.56/2.15 4.56/2.15 start location: koat_start 4.56/2.15 4.56/2.15 leaf cost: 0 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.56/2.15 4.56/2.15 2: T: 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_1(evalspeedSingleSingle1(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSingle2(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle2(ar_0, ar_1) -> Com_1(evalspeedSingleSingle3(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle3(ar_0, ar_1) -> Com_1(evalspeedSingleSingle4(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle4(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle5(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle5(ar_0, ar_1) -> Com_1(evalspeedSingleSingle6(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle6(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] 4.56/2.15 4.56/2.15 start location: koat_start 4.56/2.15 4.56/2.15 leaf cost: 0 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 A polynomial rank function with 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglestart) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglebb0in) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle0) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle1) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle2) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle3) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle4) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglebb1in) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglebb2in) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglebb3in) = 1 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle5) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle6) = 2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglestop) = 0 4.56/2.15 4.56/2.15 Pol(koat_start) = 2 4.56/2.15 4.56/2.15 orients all transitions weakly and the transitions 4.56/2.15 4.56/2.15 evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) 4.56/2.15 4.56/2.15 evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 4.56/2.15 4.56/2.15 strictly and produces the following problem: 4.56/2.15 4.56/2.15 3: T: 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_1(evalspeedSingleSingle1(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSingle2(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle2(ar_0, ar_1) -> Com_1(evalspeedSingleSingle3(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle3(ar_0, ar_1) -> Com_1(evalspeedSingleSingle4(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle4(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 4.56/2.15 4.56/2.15 (Comp: 2, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle5(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle5(ar_0, ar_1) -> Com_1(evalspeedSingleSingle6(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle6(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 2, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] 4.56/2.15 4.56/2.15 start location: koat_start 4.56/2.15 4.56/2.15 leaf cost: 0 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 A polynomial rank function with 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglestart) = V_2 + 1 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglebb0in) = V_2 + 1 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle0) = V_2 + 1 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle1) = V_2 + 1 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle2) = V_2 + 1 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle3) = V_2 + 1 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle4) = V_2 + 1 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglebb1in) = -V_1 + V_2 + 1 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglebb2in) = -V_1 + V_2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglebb3in) = -V_1 + V_2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle5) = -V_1 + V_2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSingle6) = -V_1 + V_2 4.56/2.15 4.56/2.15 Pol(evalspeedSingleSinglestop) = -V_1 + V_2 4.56/2.15 4.56/2.15 Pol(koat_start) = V_2 + 1 4.56/2.15 4.56/2.15 orients all transitions weakly and the transition 4.56/2.15 4.56/2.15 evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 4.56/2.15 4.56/2.15 strictly and produces the following problem: 4.56/2.15 4.56/2.15 4: T: 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_1(evalspeedSingleSingle1(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSingle2(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle2(ar_0, ar_1) -> Com_1(evalspeedSingleSingle3(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle3(ar_0, ar_1) -> Com_1(evalspeedSingleSingle4(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle4(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ar_1 + 1, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 4.56/2.15 4.56/2.15 (Comp: 2, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle5(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle5(ar_0, ar_1) -> Com_1(evalspeedSingleSingle6(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ?, Cost: 1) evalspeedSingleSingle6(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 2, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] 4.56/2.15 4.56/2.15 start location: koat_start 4.56/2.15 4.56/2.15 leaf cost: 0 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Repeatedly propagating knowledge in problem 4 produces the following problem: 4.56/2.15 4.56/2.15 5: T: 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_1(evalspeedSingleSingle1(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSingle2(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle2(ar_0, ar_1) -> Com_1(evalspeedSingleSingle3(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle3(ar_0, ar_1) -> Com_1(evalspeedSingleSingle4(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 1) evalspeedSingleSingle4(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ar_1 + 1, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 4.56/2.15 4.56/2.15 (Comp: 2, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 4.56/2.15 4.56/2.15 (Comp: ar_1 + 1, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle5(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ar_1 + 1, Cost: 1) evalspeedSingleSingle5(ar_0, ar_1) -> Com_1(evalspeedSingleSingle6(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: ar_1 + 1, Cost: 1) evalspeedSingleSingle6(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 2, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) 4.56/2.15 4.56/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] 4.56/2.15 4.56/2.15 start location: koat_start 4.56/2.15 4.56/2.15 leaf cost: 0 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Complexity upper bound 4*ar_1 + 15 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Time: 0.067 sec (SMT: 0.059 sec) 4.56/2.15 4.56/2.15 4.56/2.15 ---------------------------------------- 4.56/2.15 4.56/2.15 (2) 4.56/2.15 BOUNDS(1, n^1) 4.56/2.15 4.56/2.15 ---------------------------------------- 4.56/2.15 4.56/2.15 (3) Loat Proof (FINISHED) 4.56/2.15 4.56/2.15 4.56/2.15 ### Pre-processing the ITS problem ### 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Initial linear ITS problem 4.56/2.15 4.56/2.15 Start location: evalspeedSingleSinglestart 4.56/2.15 4.56/2.15 0: evalspeedSingleSinglestart -> evalspeedSingleSinglebb0in : [], cost: 1 4.56/2.15 4.56/2.15 1: evalspeedSingleSinglebb0in -> evalspeedSingleSingle0 : [], cost: 1 4.56/2.15 4.56/2.15 2: evalspeedSingleSingle0 -> evalspeedSingleSingle1 : [], cost: 1 4.56/2.15 4.56/2.15 3: evalspeedSingleSingle1 -> evalspeedSingleSingle2 : [], cost: 1 4.56/2.15 4.56/2.15 4: evalspeedSingleSingle2 -> evalspeedSingleSingle3 : [], cost: 1 4.56/2.15 4.56/2.15 5: evalspeedSingleSingle3 -> evalspeedSingleSingle4 : [], cost: 1 4.56/2.15 4.56/2.15 6: evalspeedSingleSingle4 -> evalspeedSingleSinglebb1in : A'=0, [], cost: 1 4.56/2.15 4.56/2.15 7: evalspeedSingleSinglebb1in -> evalspeedSingleSinglebb2in : [ B>=1+A ], cost: 1 4.56/2.15 4.56/2.15 8: evalspeedSingleSinglebb1in -> evalspeedSingleSinglebb3in : [ A>=B ], cost: 1 4.56/2.15 4.56/2.15 9: evalspeedSingleSinglebb2in -> evalspeedSingleSingle5 : [], cost: 1 4.56/2.15 4.56/2.15 10: evalspeedSingleSingle5 -> evalspeedSingleSingle6 : [], cost: 1 4.56/2.15 4.56/2.15 11: evalspeedSingleSingle6 -> evalspeedSingleSinglebb1in : A'=1+A, [], cost: 1 4.56/2.15 4.56/2.15 12: evalspeedSingleSinglebb3in -> evalspeedSingleSinglestop : [], cost: 1 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Removed unreachable and leaf rules: 4.56/2.15 4.56/2.15 Start location: evalspeedSingleSinglestart 4.56/2.15 4.56/2.15 0: evalspeedSingleSinglestart -> evalspeedSingleSinglebb0in : [], cost: 1 4.56/2.15 4.56/2.15 1: evalspeedSingleSinglebb0in -> evalspeedSingleSingle0 : [], cost: 1 4.56/2.15 4.56/2.15 2: evalspeedSingleSingle0 -> evalspeedSingleSingle1 : [], cost: 1 4.56/2.15 4.56/2.15 3: evalspeedSingleSingle1 -> evalspeedSingleSingle2 : [], cost: 1 4.56/2.15 4.56/2.15 4: evalspeedSingleSingle2 -> evalspeedSingleSingle3 : [], cost: 1 4.56/2.15 4.56/2.15 5: evalspeedSingleSingle3 -> evalspeedSingleSingle4 : [], cost: 1 4.56/2.15 4.56/2.15 6: evalspeedSingleSingle4 -> evalspeedSingleSinglebb1in : A'=0, [], cost: 1 4.56/2.15 4.56/2.15 7: evalspeedSingleSinglebb1in -> evalspeedSingleSinglebb2in : [ B>=1+A ], cost: 1 4.56/2.15 4.56/2.15 9: evalspeedSingleSinglebb2in -> evalspeedSingleSingle5 : [], cost: 1 4.56/2.15 4.56/2.15 10: evalspeedSingleSingle5 -> evalspeedSingleSingle6 : [], cost: 1 4.56/2.15 4.56/2.15 11: evalspeedSingleSingle6 -> evalspeedSingleSinglebb1in : A'=1+A, [], cost: 1 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 ### Simplification by acceleration and chaining ### 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Eliminated locations (on linear paths): 4.56/2.15 4.56/2.15 Start location: evalspeedSingleSinglestart 4.56/2.15 4.56/2.15 18: evalspeedSingleSinglestart -> evalspeedSingleSinglebb1in : A'=0, [], cost: 7 4.56/2.15 4.56/2.15 21: evalspeedSingleSinglebb1in -> evalspeedSingleSinglebb1in : A'=1+A, [ B>=1+A ], cost: 4 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Accelerating simple loops of location 7. 4.56/2.15 4.56/2.15 Accelerating the following rules: 4.56/2.15 4.56/2.15 21: evalspeedSingleSinglebb1in -> evalspeedSingleSinglebb1in : A'=1+A, [ B>=1+A ], cost: 4 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Accelerated rule 21 with metering function -A+B, yielding the new rule 22. 4.56/2.15 4.56/2.15 Removing the simple loops: 21. 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Accelerated all simple loops using metering functions (where possible): 4.56/2.15 4.56/2.15 Start location: evalspeedSingleSinglestart 4.56/2.15 4.56/2.15 18: evalspeedSingleSinglestart -> evalspeedSingleSinglebb1in : A'=0, [], cost: 7 4.56/2.15 4.56/2.15 22: evalspeedSingleSinglebb1in -> evalspeedSingleSinglebb1in : A'=B, [ B>=1+A ], cost: -4*A+4*B 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Chained accelerated rules (with incoming rules): 4.56/2.15 4.56/2.15 Start location: evalspeedSingleSinglestart 4.56/2.15 4.56/2.15 18: evalspeedSingleSinglestart -> evalspeedSingleSinglebb1in : A'=0, [], cost: 7 4.56/2.15 4.56/2.15 23: evalspeedSingleSinglestart -> evalspeedSingleSinglebb1in : A'=B, [ B>=1 ], cost: 7+4*B 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Removed unreachable locations (and leaf rules with constant cost): 4.56/2.15 4.56/2.15 Start location: evalspeedSingleSinglestart 4.56/2.15 4.56/2.15 23: evalspeedSingleSinglestart -> evalspeedSingleSinglebb1in : A'=B, [ B>=1 ], cost: 7+4*B 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 ### Computing asymptotic complexity ### 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Fully simplified ITS problem 4.56/2.15 4.56/2.15 Start location: evalspeedSingleSinglestart 4.56/2.15 4.56/2.15 23: evalspeedSingleSinglestart -> evalspeedSingleSinglebb1in : A'=B, [ B>=1 ], cost: 7+4*B 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Computing asymptotic complexity for rule 23 4.56/2.15 4.56/2.15 Solved the limit problem by the following transformations: 4.56/2.15 4.56/2.15 Created initial limit problem: 4.56/2.15 4.56/2.15 7+4*B (+), B (+/+!) [not solved] 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 removing all constraints (solved by SMT) 4.56/2.15 4.56/2.15 resulting limit problem: [solved] 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 applying transformation rule (C) using substitution {B==n} 4.56/2.15 4.56/2.15 resulting limit problem: 4.56/2.15 4.56/2.15 [solved] 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Solution: 4.56/2.15 4.56/2.15 B / n 4.56/2.15 4.56/2.15 Resulting cost 7+4*n has complexity: Poly(n^1) 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Found new complexity Poly(n^1). 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 Obtained the following overall complexity (w.r.t. the length of the input n): 4.56/2.15 4.56/2.15 Complexity: Poly(n^1) 4.56/2.15 4.56/2.15 Cpx degree: 1 4.56/2.15 4.56/2.15 Solved cost: 7+4*n 4.56/2.15 4.56/2.15 Rule cost: 7+4*B 4.56/2.15 4.56/2.15 Rule guard: [ B>=1 ] 4.56/2.15 4.56/2.15 4.56/2.15 4.56/2.15 WORST_CASE(Omega(n^1),?) 4.56/2.15 4.56/2.15 4.56/2.15 ---------------------------------------- 4.56/2.15 4.56/2.15 (4) 4.56/2.15 BOUNDS(n^1, INF) 4.56/2.16 EOF