4.43/2.14 WORST_CASE(Omega(n^1), O(n^1)) 4.43/2.15 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.43/2.15 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.43/2.15 4.43/2.15 4.43/2.15 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.43/2.15 4.43/2.15 (0) CpxIntTrs 4.43/2.15 (1) Koat Proof [FINISHED, 27 ms] 4.43/2.15 (2) BOUNDS(1, n^1) 4.43/2.15 (3) Loat Proof [FINISHED, 399 ms] 4.43/2.15 (4) BOUNDS(n^1, INF) 4.43/2.15 4.43/2.15 4.43/2.15 ---------------------------------------- 4.43/2.15 4.43/2.15 (0) 4.43/2.15 Obligation: 4.43/2.15 Complexity Int TRS consisting of the following rules: 4.43/2.15 eval_easy2_start(v__0, v_z) -> Com_1(eval_easy2_bb0_in(v__0, v_z)) :|: TRUE 4.43/2.15 eval_easy2_bb0_in(v__0, v_z) -> Com_1(eval_easy2_0(v__0, v_z)) :|: TRUE 4.43/2.15 eval_easy2_0(v__0, v_z) -> Com_1(eval_easy2_1(v__0, v_z)) :|: TRUE 4.43/2.15 eval_easy2_1(v__0, v_z) -> Com_1(eval_easy2_2(v__0, v_z)) :|: TRUE 4.43/2.15 eval_easy2_2(v__0, v_z) -> Com_1(eval_easy2_3(v__0, v_z)) :|: TRUE 4.43/2.15 eval_easy2_3(v__0, v_z) -> Com_1(eval_easy2_4(v__0, v_z)) :|: TRUE 4.43/2.15 eval_easy2_4(v__0, v_z) -> Com_1(eval_easy2_5(v__0, v_z)) :|: TRUE 4.43/2.15 eval_easy2_5(v__0, v_z) -> Com_1(eval_easy2_6(v__0, v_z)) :|: TRUE 4.43/2.15 eval_easy2_6(v__0, v_z) -> Com_1(eval_easy2_bb1_in(v_z, v_z)) :|: TRUE 4.43/2.15 eval_easy2_bb1_in(v__0, v_z) -> Com_1(eval_easy2_bb2_in(v__0, v_z)) :|: v__0 > 0 4.43/2.15 eval_easy2_bb1_in(v__0, v_z) -> Com_1(eval_easy2_bb3_in(v__0, v_z)) :|: v__0 <= 0 4.43/2.15 eval_easy2_bb2_in(v__0, v_z) -> Com_1(eval_easy2_bb1_in(v__0 - 1, v_z)) :|: TRUE 4.43/2.15 eval_easy2_bb3_in(v__0, v_z) -> Com_1(eval_easy2_stop(v__0, v_z)) :|: TRUE 4.43/2.15 4.43/2.15 The start-symbols are:[eval_easy2_start_2] 4.43/2.15 4.43/2.15 4.43/2.15 ---------------------------------------- 4.43/2.15 4.43/2.15 (1) Koat Proof (FINISHED) 4.43/2.15 YES(?, 2*ar_1 + 15) 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Initial complexity problem: 4.43/2.15 4.43/2.15 1: T: 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2start(ar_0, ar_1) -> Com_1(evaleasy2bb0in(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb0in(ar_0, ar_1) -> Com_1(evaleasy20(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy20(ar_0, ar_1) -> Com_1(evaleasy21(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy21(ar_0, ar_1) -> Com_1(evaleasy22(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy22(ar_0, ar_1) -> Com_1(evaleasy23(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy23(ar_0, ar_1) -> Com_1(evaleasy24(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy24(ar_0, ar_1) -> Com_1(evaleasy25(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy25(ar_0, ar_1) -> Com_1(evaleasy26(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy26(ar_0, ar_1) -> Com_1(evaleasy2bb1in(ar_1, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb2in(ar_0, ar_1)) [ ar_0 >= 1 ] 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb2in(ar_0, ar_1) -> Com_1(evaleasy2bb1in(ar_0 - 1, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb3in(ar_0, ar_1) -> Com_1(evaleasy2stop(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evaleasy2start(ar_0, ar_1)) [ 0 <= 0 ] 4.43/2.15 4.43/2.15 start location: koat_start 4.43/2.15 4.43/2.15 leaf cost: 0 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.43/2.15 4.43/2.15 2: T: 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy2start(ar_0, ar_1) -> Com_1(evaleasy2bb0in(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy2bb0in(ar_0, ar_1) -> Com_1(evaleasy20(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy20(ar_0, ar_1) -> Com_1(evaleasy21(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy21(ar_0, ar_1) -> Com_1(evaleasy22(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy22(ar_0, ar_1) -> Com_1(evaleasy23(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy23(ar_0, ar_1) -> Com_1(evaleasy24(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy24(ar_0, ar_1) -> Com_1(evaleasy25(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy25(ar_0, ar_1) -> Com_1(evaleasy26(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy26(ar_0, ar_1) -> Com_1(evaleasy2bb1in(ar_1, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb2in(ar_0, ar_1)) [ ar_0 >= 1 ] 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb2in(ar_0, ar_1) -> Com_1(evaleasy2bb1in(ar_0 - 1, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb3in(ar_0, ar_1) -> Com_1(evaleasy2stop(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evaleasy2start(ar_0, ar_1)) [ 0 <= 0 ] 4.43/2.15 4.43/2.15 start location: koat_start 4.43/2.15 4.43/2.15 leaf cost: 0 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 A polynomial rank function with 4.43/2.15 4.43/2.15 Pol(evaleasy2start) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy2bb0in) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy20) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy21) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy22) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy23) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy24) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy25) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy26) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy2bb1in) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy2bb2in) = 2 4.43/2.15 4.43/2.15 Pol(evaleasy2bb3in) = 1 4.43/2.15 4.43/2.15 Pol(evaleasy2stop) = 0 4.43/2.15 4.43/2.15 Pol(koat_start) = 2 4.43/2.15 4.43/2.15 orients all transitions weakly and the transitions 4.43/2.15 4.43/2.15 evaleasy2bb3in(ar_0, ar_1) -> Com_1(evaleasy2stop(ar_0, ar_1)) 4.43/2.15 4.43/2.15 evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 4.43/2.15 4.43/2.15 strictly and produces the following problem: 4.43/2.15 4.43/2.15 3: T: 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy2start(ar_0, ar_1) -> Com_1(evaleasy2bb0in(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy2bb0in(ar_0, ar_1) -> Com_1(evaleasy20(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy20(ar_0, ar_1) -> Com_1(evaleasy21(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy21(ar_0, ar_1) -> Com_1(evaleasy22(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy22(ar_0, ar_1) -> Com_1(evaleasy23(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy23(ar_0, ar_1) -> Com_1(evaleasy24(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy24(ar_0, ar_1) -> Com_1(evaleasy25(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy25(ar_0, ar_1) -> Com_1(evaleasy26(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy26(ar_0, ar_1) -> Com_1(evaleasy2bb1in(ar_1, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb2in(ar_0, ar_1)) [ ar_0 >= 1 ] 4.43/2.15 4.43/2.15 (Comp: 2, Cost: 1) evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb2in(ar_0, ar_1) -> Com_1(evaleasy2bb1in(ar_0 - 1, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 2, Cost: 1) evaleasy2bb3in(ar_0, ar_1) -> Com_1(evaleasy2stop(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evaleasy2start(ar_0, ar_1)) [ 0 <= 0 ] 4.43/2.15 4.43/2.15 start location: koat_start 4.43/2.15 4.43/2.15 leaf cost: 0 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 A polynomial rank function with 4.43/2.15 4.43/2.15 Pol(evaleasy2start) = V_2 + 1 4.43/2.15 4.43/2.15 Pol(evaleasy2bb0in) = V_2 + 1 4.43/2.15 4.43/2.15 Pol(evaleasy20) = V_2 + 1 4.43/2.15 4.43/2.15 Pol(evaleasy21) = V_2 + 1 4.43/2.15 4.43/2.15 Pol(evaleasy22) = V_2 + 1 4.43/2.15 4.43/2.15 Pol(evaleasy23) = V_2 + 1 4.43/2.15 4.43/2.15 Pol(evaleasy24) = V_2 + 1 4.43/2.15 4.43/2.15 Pol(evaleasy25) = V_2 + 1 4.43/2.15 4.43/2.15 Pol(evaleasy26) = V_2 + 1 4.43/2.15 4.43/2.15 Pol(evaleasy2bb1in) = V_1 + 1 4.43/2.15 4.43/2.15 Pol(evaleasy2bb2in) = V_1 4.43/2.15 4.43/2.15 Pol(evaleasy2bb3in) = V_1 4.43/2.15 4.43/2.15 Pol(evaleasy2stop) = V_1 4.43/2.15 4.43/2.15 Pol(koat_start) = V_2 + 1 4.43/2.15 4.43/2.15 orients all transitions weakly and the transition 4.43/2.15 4.43/2.15 evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb2in(ar_0, ar_1)) [ ar_0 >= 1 ] 4.43/2.15 4.43/2.15 strictly and produces the following problem: 4.43/2.15 4.43/2.15 4: T: 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy2start(ar_0, ar_1) -> Com_1(evaleasy2bb0in(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy2bb0in(ar_0, ar_1) -> Com_1(evaleasy20(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy20(ar_0, ar_1) -> Com_1(evaleasy21(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy21(ar_0, ar_1) -> Com_1(evaleasy22(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy22(ar_0, ar_1) -> Com_1(evaleasy23(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy23(ar_0, ar_1) -> Com_1(evaleasy24(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy24(ar_0, ar_1) -> Com_1(evaleasy25(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy25(ar_0, ar_1) -> Com_1(evaleasy26(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy26(ar_0, ar_1) -> Com_1(evaleasy2bb1in(ar_1, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ar_1 + 1, Cost: 1) evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb2in(ar_0, ar_1)) [ ar_0 >= 1 ] 4.43/2.15 4.43/2.15 (Comp: 2, Cost: 1) evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 4.43/2.15 4.43/2.15 (Comp: ?, Cost: 1) evaleasy2bb2in(ar_0, ar_1) -> Com_1(evaleasy2bb1in(ar_0 - 1, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 2, Cost: 1) evaleasy2bb3in(ar_0, ar_1) -> Com_1(evaleasy2stop(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evaleasy2start(ar_0, ar_1)) [ 0 <= 0 ] 4.43/2.15 4.43/2.15 start location: koat_start 4.43/2.15 4.43/2.15 leaf cost: 0 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Repeatedly propagating knowledge in problem 4 produces the following problem: 4.43/2.15 4.43/2.15 5: T: 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy2start(ar_0, ar_1) -> Com_1(evaleasy2bb0in(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy2bb0in(ar_0, ar_1) -> Com_1(evaleasy20(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy20(ar_0, ar_1) -> Com_1(evaleasy21(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy21(ar_0, ar_1) -> Com_1(evaleasy22(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy22(ar_0, ar_1) -> Com_1(evaleasy23(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy23(ar_0, ar_1) -> Com_1(evaleasy24(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy24(ar_0, ar_1) -> Com_1(evaleasy25(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy25(ar_0, ar_1) -> Com_1(evaleasy26(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 1) evaleasy26(ar_0, ar_1) -> Com_1(evaleasy2bb1in(ar_1, ar_1)) 4.43/2.15 4.43/2.15 (Comp: ar_1 + 1, Cost: 1) evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb2in(ar_0, ar_1)) [ ar_0 >= 1 ] 4.43/2.15 4.43/2.15 (Comp: 2, Cost: 1) evaleasy2bb1in(ar_0, ar_1) -> Com_1(evaleasy2bb3in(ar_0, ar_1)) [ 0 >= ar_0 ] 4.43/2.15 4.43/2.15 (Comp: ar_1 + 1, Cost: 1) evaleasy2bb2in(ar_0, ar_1) -> Com_1(evaleasy2bb1in(ar_0 - 1, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 2, Cost: 1) evaleasy2bb3in(ar_0, ar_1) -> Com_1(evaleasy2stop(ar_0, ar_1)) 4.43/2.15 4.43/2.15 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evaleasy2start(ar_0, ar_1)) [ 0 <= 0 ] 4.43/2.15 4.43/2.15 start location: koat_start 4.43/2.15 4.43/2.15 leaf cost: 0 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Complexity upper bound 2*ar_1 + 15 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Time: 0.064 sec (SMT: 0.056 sec) 4.43/2.15 4.43/2.15 4.43/2.15 ---------------------------------------- 4.43/2.15 4.43/2.15 (2) 4.43/2.15 BOUNDS(1, n^1) 4.43/2.15 4.43/2.15 ---------------------------------------- 4.43/2.15 4.43/2.15 (3) Loat Proof (FINISHED) 4.43/2.15 4.43/2.15 4.43/2.15 ### Pre-processing the ITS problem ### 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Initial linear ITS problem 4.43/2.15 4.43/2.15 Start location: evaleasy2start 4.43/2.15 4.43/2.15 0: evaleasy2start -> evaleasy2bb0in : [], cost: 1 4.43/2.15 4.43/2.15 1: evaleasy2bb0in -> evaleasy20 : [], cost: 1 4.43/2.15 4.43/2.15 2: evaleasy20 -> evaleasy21 : [], cost: 1 4.43/2.15 4.43/2.15 3: evaleasy21 -> evaleasy22 : [], cost: 1 4.43/2.15 4.43/2.15 4: evaleasy22 -> evaleasy23 : [], cost: 1 4.43/2.15 4.43/2.15 5: evaleasy23 -> evaleasy24 : [], cost: 1 4.43/2.15 4.43/2.15 6: evaleasy24 -> evaleasy25 : [], cost: 1 4.43/2.15 4.43/2.15 7: evaleasy25 -> evaleasy26 : [], cost: 1 4.43/2.15 4.43/2.15 8: evaleasy26 -> evaleasy2bb1in : A'=B, [], cost: 1 4.43/2.15 4.43/2.15 9: evaleasy2bb1in -> evaleasy2bb2in : [ A>=1 ], cost: 1 4.43/2.15 4.43/2.15 10: evaleasy2bb1in -> evaleasy2bb3in : [ 0>=A ], cost: 1 4.43/2.15 4.43/2.15 11: evaleasy2bb2in -> evaleasy2bb1in : A'=-1+A, [], cost: 1 4.43/2.15 4.43/2.15 12: evaleasy2bb3in -> evaleasy2stop : [], cost: 1 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Removed unreachable and leaf rules: 4.43/2.15 4.43/2.15 Start location: evaleasy2start 4.43/2.15 4.43/2.15 0: evaleasy2start -> evaleasy2bb0in : [], cost: 1 4.43/2.15 4.43/2.15 1: evaleasy2bb0in -> evaleasy20 : [], cost: 1 4.43/2.15 4.43/2.15 2: evaleasy20 -> evaleasy21 : [], cost: 1 4.43/2.15 4.43/2.15 3: evaleasy21 -> evaleasy22 : [], cost: 1 4.43/2.15 4.43/2.15 4: evaleasy22 -> evaleasy23 : [], cost: 1 4.43/2.15 4.43/2.15 5: evaleasy23 -> evaleasy24 : [], cost: 1 4.43/2.15 4.43/2.15 6: evaleasy24 -> evaleasy25 : [], cost: 1 4.43/2.15 4.43/2.15 7: evaleasy25 -> evaleasy26 : [], cost: 1 4.43/2.15 4.43/2.15 8: evaleasy26 -> evaleasy2bb1in : A'=B, [], cost: 1 4.43/2.15 4.43/2.15 9: evaleasy2bb1in -> evaleasy2bb2in : [ A>=1 ], cost: 1 4.43/2.15 4.43/2.15 11: evaleasy2bb2in -> evaleasy2bb1in : A'=-1+A, [], cost: 1 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 ### Simplification by acceleration and chaining ### 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Eliminated locations (on linear paths): 4.43/2.15 4.43/2.15 Start location: evaleasy2start 4.43/2.15 4.43/2.15 20: evaleasy2start -> evaleasy2bb1in : A'=B, [], cost: 9 4.43/2.15 4.43/2.15 21: evaleasy2bb1in -> evaleasy2bb1in : A'=-1+A, [ A>=1 ], cost: 2 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Accelerating simple loops of location 9. 4.43/2.15 4.43/2.15 Accelerating the following rules: 4.43/2.15 4.43/2.15 21: evaleasy2bb1in -> evaleasy2bb1in : A'=-1+A, [ A>=1 ], cost: 2 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Accelerated rule 21 with metering function A, yielding the new rule 22. 4.43/2.15 4.43/2.15 Removing the simple loops: 21. 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Accelerated all simple loops using metering functions (where possible): 4.43/2.15 4.43/2.15 Start location: evaleasy2start 4.43/2.15 4.43/2.15 20: evaleasy2start -> evaleasy2bb1in : A'=B, [], cost: 9 4.43/2.15 4.43/2.15 22: evaleasy2bb1in -> evaleasy2bb1in : A'=0, [ A>=1 ], cost: 2*A 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Chained accelerated rules (with incoming rules): 4.43/2.15 4.43/2.15 Start location: evaleasy2start 4.43/2.15 4.43/2.15 20: evaleasy2start -> evaleasy2bb1in : A'=B, [], cost: 9 4.43/2.15 4.43/2.15 23: evaleasy2start -> evaleasy2bb1in : A'=0, [ B>=1 ], cost: 9+2*B 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Removed unreachable locations (and leaf rules with constant cost): 4.43/2.15 4.43/2.15 Start location: evaleasy2start 4.43/2.15 4.43/2.15 23: evaleasy2start -> evaleasy2bb1in : A'=0, [ B>=1 ], cost: 9+2*B 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 ### Computing asymptotic complexity ### 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Fully simplified ITS problem 4.43/2.15 4.43/2.15 Start location: evaleasy2start 4.43/2.15 4.43/2.15 23: evaleasy2start -> evaleasy2bb1in : A'=0, [ B>=1 ], cost: 9+2*B 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Computing asymptotic complexity for rule 23 4.43/2.15 4.43/2.15 Solved the limit problem by the following transformations: 4.43/2.15 4.43/2.15 Created initial limit problem: 4.43/2.15 4.43/2.15 9+2*B (+), B (+/+!) [not solved] 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 removing all constraints (solved by SMT) 4.43/2.15 4.43/2.15 resulting limit problem: [solved] 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 applying transformation rule (C) using substitution {B==n} 4.43/2.15 4.43/2.15 resulting limit problem: 4.43/2.15 4.43/2.15 [solved] 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Solution: 4.43/2.15 4.43/2.15 B / n 4.43/2.15 4.43/2.15 Resulting cost 9+2*n has complexity: Poly(n^1) 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Found new complexity Poly(n^1). 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 Obtained the following overall complexity (w.r.t. the length of the input n): 4.43/2.15 4.43/2.15 Complexity: Poly(n^1) 4.43/2.15 4.43/2.15 Cpx degree: 1 4.43/2.15 4.43/2.15 Solved cost: 9+2*n 4.43/2.15 4.43/2.15 Rule cost: 9+2*B 4.43/2.15 4.43/2.15 Rule guard: [ B>=1 ] 4.43/2.15 4.43/2.15 4.43/2.15 4.43/2.15 WORST_CASE(Omega(n^1),?) 4.43/2.15 4.43/2.15 4.43/2.15 ---------------------------------------- 4.43/2.15 4.43/2.15 (4) 4.43/2.15 BOUNDS(n^1, INF) 4.43/2.17 EOF