4.98/2.38 WORST_CASE(Omega(n^1), O(n^1)) 4.98/2.39 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.98/2.39 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.98/2.39 4.98/2.39 4.98/2.39 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.98/2.39 4.98/2.39 (0) CpxIntTrs 4.98/2.39 (1) Koat Proof [FINISHED, 313 ms] 4.98/2.39 (2) BOUNDS(1, n^1) 4.98/2.39 (3) Loat Proof [FINISHED, 695 ms] 4.98/2.39 (4) BOUNDS(n^1, INF) 4.98/2.39 4.98/2.39 4.98/2.39 ---------------------------------------- 4.98/2.39 4.98/2.39 (0) 4.98/2.39 Obligation: 4.98/2.39 Complexity Int TRS consisting of the following rules: 4.98/2.39 eval_start_start(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb0_in(v_m, v_n, v_x_0, v_y_0)) :|: TRUE 4.98/2.39 eval_start_bb0_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_0(v_m, v_n, v_x_0, v_y_0)) :|: TRUE 4.98/2.39 eval_start_0(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_1(v_m, v_n, v_x_0, v_y_0)) :|: TRUE 4.98/2.39 eval_start_1(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_2(v_m, v_n, v_x_0, v_y_0)) :|: TRUE 4.98/2.39 eval_start_2(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_3(v_m, v_n, v_x_0, v_y_0)) :|: TRUE 4.98/2.39 eval_start_3(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_4(v_m, v_n, v_x_0, v_y_0)) :|: TRUE 4.98/2.39 eval_start_4(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_5(v_m, v_n, v_x_0, v_y_0)) :|: TRUE 4.98/2.39 eval_start_5(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_6(v_m, v_n, v_x_0, v_y_0)) :|: TRUE 4.98/2.39 eval_start_6(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb1_in(v_m, v_n, 0, 0)) :|: TRUE 4.98/2.39 eval_start_bb1_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb2_in(v_m, v_n, v_x_0, v_y_0)) :|: v_x_0 < v_n 4.98/2.39 eval_start_bb1_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb3_in(v_m, v_n, v_x_0, v_y_0)) :|: v_x_0 >= v_n 4.98/2.39 eval_start_bb2_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb1_in(v_m, v_n, v_x_0, v_y_0 + 1)) :|: v_y_0 < v_m 4.98/2.39 eval_start_bb2_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb1_in(v_m, v_n, v_x_0 + 1, v_y_0 + 1)) :|: v_y_0 < v_m && v_y_0 >= v_m 4.98/2.39 eval_start_bb2_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb1_in(v_m, v_n, v_x_0, v_y_0)) :|: v_y_0 >= v_m && v_y_0 < v_m 4.98/2.39 eval_start_bb2_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb1_in(v_m, v_n, v_x_0 + 1, v_y_0)) :|: v_y_0 >= v_m 4.98/2.39 eval_start_bb3_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_start_stop(v_m, v_n, v_x_0, v_y_0)) :|: TRUE 4.98/2.39 4.98/2.39 The start-symbols are:[eval_start_start_4] 4.98/2.39 4.98/2.39 4.98/2.39 ---------------------------------------- 4.98/2.39 4.98/2.39 (1) Koat Proof (FINISHED) 4.98/2.39 YES(?, 2*ar_2 + 2*ar_3 + 14) 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Initial complexity problem: 4.98/2.39 4.98/2.39 1: T: 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, 0, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 + 1 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 /\ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 /\ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.98/2.39 4.98/2.39 start location: koat_start 4.98/2.39 4.98/2.39 leaf cost: 0 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Testing for reachability in the complexity graph removes the following transitions from problem 1: 4.98/2.39 4.98/2.39 evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 /\ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 /\ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 We thus obtain the following problem: 4.98/2.39 4.98/2.39 2: T: 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 + 1 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, 0, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.98/2.39 4.98/2.39 start location: koat_start 4.98/2.39 4.98/2.39 leaf cost: 0 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Repeatedly propagating knowledge in problem 2 produces the following problem: 4.98/2.39 4.98/2.39 3: T: 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 + 1 ] 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, 0, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.98/2.39 4.98/2.39 start location: koat_start 4.98/2.39 4.98/2.39 leaf cost: 0 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 A polynomial rank function with 4.98/2.39 4.98/2.39 Pol(evalstartbb3in) = 1 4.98/2.39 4.98/2.39 Pol(evalstartstop) = 0 4.98/2.39 4.98/2.39 Pol(evalstartbb2in) = 2 4.98/2.39 4.98/2.39 Pol(evalstartbb1in) = 2 4.98/2.39 4.98/2.39 Pol(evalstart6) = 2 4.98/2.39 4.98/2.39 Pol(evalstart5) = 2 4.98/2.39 4.98/2.39 Pol(evalstart4) = 2 4.98/2.39 4.98/2.39 Pol(evalstart3) = 2 4.98/2.39 4.98/2.39 Pol(evalstart2) = 2 4.98/2.39 4.98/2.39 Pol(evalstart1) = 2 4.98/2.39 4.98/2.39 Pol(evalstart0) = 2 4.98/2.39 4.98/2.39 Pol(evalstartbb0in) = 2 4.98/2.39 4.98/2.39 Pol(evalstartstart) = 2 4.98/2.39 4.98/2.39 Pol(koat_start) = 2 4.98/2.39 4.98/2.39 orients all transitions weakly and the transitions 4.98/2.39 4.98/2.39 evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 4.98/2.39 4.98/2.39 strictly and produces the following problem: 4.98/2.39 4.98/2.39 4: T: 4.98/2.39 4.98/2.39 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 + 1 ] 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, 0, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.98/2.39 4.98/2.39 start location: koat_start 4.98/2.39 4.98/2.39 leaf cost: 0 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 A polynomial rank function with 4.98/2.39 4.98/2.39 Pol(evalstartbb3in) = -V_2 + V_4 4.98/2.39 4.98/2.39 Pol(evalstartstop) = -V_2 + V_4 4.98/2.39 4.98/2.39 Pol(evalstartbb2in) = -V_2 + V_4 4.98/2.39 4.98/2.39 Pol(evalstartbb1in) = -V_2 + V_4 4.98/2.39 4.98/2.39 Pol(evalstart6) = V_4 4.98/2.39 4.98/2.39 Pol(evalstart5) = V_4 4.98/2.39 4.98/2.39 Pol(evalstart4) = V_4 4.98/2.39 4.98/2.39 Pol(evalstart3) = V_4 4.98/2.39 4.98/2.39 Pol(evalstart2) = V_4 4.98/2.39 4.98/2.39 Pol(evalstart1) = V_4 4.98/2.39 4.98/2.39 Pol(evalstart0) = V_4 4.98/2.39 4.98/2.39 Pol(evalstartbb0in) = V_4 4.98/2.39 4.98/2.39 Pol(evalstartstart) = V_4 4.98/2.39 4.98/2.39 Pol(koat_start) = V_4 4.98/2.39 4.98/2.39 orients all transitions weakly and the transition 4.98/2.39 4.98/2.39 evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 strictly and produces the following problem: 4.98/2.39 4.98/2.39 5: T: 4.98/2.39 4.98/2.39 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 (Comp: ar_3, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_2 >= ar_0 + 1 ] 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, 0, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.98/2.39 4.98/2.39 start location: koat_start 4.98/2.39 4.98/2.39 leaf cost: 0 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Applied AI with 'oct' on problem 5 to obtain the following invariants: 4.98/2.39 4.98/2.39 For symbol evalstartbb1in: X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 4.98/2.39 4.98/2.39 For symbol evalstartbb2in: X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ -X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 4.98/2.39 4.98/2.39 For symbol evalstartbb3in: X_1 - X_3 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 This yielded the following problem: 4.98/2.39 4.98/2.39 6: T: 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, 0, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_0 + 1 ] 4.98/2.39 4.98/2.39 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_2 ] 4.98/2.39 4.98/2.39 (Comp: ar_3, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.98/2.39 4.98/2.39 start location: koat_start 4.98/2.39 4.98/2.39 leaf cost: 0 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 A polynomial rank function with 4.98/2.39 4.98/2.39 Pol(koat_start) = V_3 4.98/2.39 4.98/2.39 Pol(evalstartstart) = V_3 4.98/2.39 4.98/2.39 Pol(evalstartbb0in) = V_3 4.98/2.39 4.98/2.39 Pol(evalstart0) = V_3 4.98/2.39 4.98/2.39 Pol(evalstart1) = V_3 4.98/2.39 4.98/2.39 Pol(evalstart2) = V_3 4.98/2.39 4.98/2.39 Pol(evalstart3) = V_3 4.98/2.39 4.98/2.39 Pol(evalstart4) = V_3 4.98/2.39 4.98/2.39 Pol(evalstart5) = V_3 4.98/2.39 4.98/2.39 Pol(evalstart6) = V_3 4.98/2.39 4.98/2.39 Pol(evalstartbb1in) = -V_1 + V_3 4.98/2.39 4.98/2.39 Pol(evalstartbb2in) = -V_1 + V_3 4.98/2.39 4.98/2.39 Pol(evalstartbb3in) = -V_1 + V_3 4.98/2.39 4.98/2.39 Pol(evalstartstop) = -V_1 + V_3 4.98/2.39 4.98/2.39 orients all transitions weakly and the transition 4.98/2.39 4.98/2.39 evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 strictly and produces the following problem: 4.98/2.39 4.98/2.39 7: T: 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, 0, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_0 + 1 ] 4.98/2.39 4.98/2.39 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_2 ] 4.98/2.39 4.98/2.39 (Comp: ar_3, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 (Comp: ar_2, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.98/2.39 4.98/2.39 start location: koat_start 4.98/2.39 4.98/2.39 leaf cost: 0 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Repeatedly propagating knowledge in problem 7 produces the following problem: 4.98/2.39 4.98/2.39 8: T: 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstart(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart0(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart1(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart2(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart3(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart4(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart5(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstart6(ar_0, ar_1, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(0, 0, ar_2, ar_3)) 4.98/2.39 4.98/2.39 (Comp: ar_2 + ar_3 + 1, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_0 + 1 ] 4.98/2.39 4.98/2.39 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_2 ] 4.98/2.39 4.98/2.39 (Comp: ar_3, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_3 >= ar_1 + 1 ] 4.98/2.39 4.98/2.39 (Comp: ar_2, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1, ar_2, ar_3)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= ar_3 ] 4.98/2.39 4.98/2.39 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2, ar_3) -> Com_1(evalstartstop(ar_0, ar_1, ar_2, ar_3)) [ ar_0 - ar_2 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] 4.98/2.39 4.98/2.39 start location: koat_start 4.98/2.39 4.98/2.39 leaf cost: 0 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Complexity upper bound 2*ar_2 + 2*ar_3 + 14 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Time: 0.301 sec (SMT: 0.246 sec) 4.98/2.39 4.98/2.39 4.98/2.39 ---------------------------------------- 4.98/2.39 4.98/2.39 (2) 4.98/2.39 BOUNDS(1, n^1) 4.98/2.39 4.98/2.39 ---------------------------------------- 4.98/2.39 4.98/2.39 (3) Loat Proof (FINISHED) 4.98/2.39 4.98/2.39 4.98/2.39 ### Pre-processing the ITS problem ### 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Initial linear ITS problem 4.98/2.39 4.98/2.39 Start location: evalstartstart 4.98/2.39 4.98/2.39 0: evalstartstart -> evalstartbb0in : [], cost: 1 4.98/2.39 4.98/2.39 1: evalstartbb0in -> evalstart0 : [], cost: 1 4.98/2.39 4.98/2.39 2: evalstart0 -> evalstart1 : [], cost: 1 4.98/2.39 4.98/2.39 3: evalstart1 -> evalstart2 : [], cost: 1 4.98/2.39 4.98/2.39 4: evalstart2 -> evalstart3 : [], cost: 1 4.98/2.39 4.98/2.39 5: evalstart3 -> evalstart4 : [], cost: 1 4.98/2.39 4.98/2.39 6: evalstart4 -> evalstart5 : [], cost: 1 4.98/2.39 4.98/2.39 7: evalstart5 -> evalstart6 : [], cost: 1 4.98/2.39 4.98/2.39 8: evalstart6 -> evalstartbb1in : A'=0, B'=0, [], cost: 1 4.98/2.39 4.98/2.39 9: evalstartbb1in -> evalstartbb2in : [ C>=1+A ], cost: 1 4.98/2.39 4.98/2.39 10: evalstartbb1in -> evalstartbb3in : [ A>=C ], cost: 1 4.98/2.39 4.98/2.39 11: evalstartbb2in -> evalstartbb1in : B'=1+B, [ D>=1+B ], cost: 1 4.98/2.39 4.98/2.39 12: evalstartbb2in -> evalstartbb1in : A'=1+A, B'=1+B, [ D>=1+B && B>=D ], cost: 1 4.98/2.39 4.98/2.39 13: evalstartbb2in -> evalstartbb1in : [ B>=D && D>=1+B ], cost: 1 4.98/2.39 4.98/2.39 14: evalstartbb2in -> evalstartbb1in : A'=1+A, [ B>=D ], cost: 1 4.98/2.39 4.98/2.39 15: evalstartbb3in -> evalstartstop : [], cost: 1 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Removed unreachable and leaf rules: 4.98/2.39 4.98/2.39 Start location: evalstartstart 4.98/2.39 4.98/2.39 0: evalstartstart -> evalstartbb0in : [], cost: 1 4.98/2.39 4.98/2.39 1: evalstartbb0in -> evalstart0 : [], cost: 1 4.98/2.39 4.98/2.39 2: evalstart0 -> evalstart1 : [], cost: 1 4.98/2.39 4.98/2.39 3: evalstart1 -> evalstart2 : [], cost: 1 4.98/2.39 4.98/2.39 4: evalstart2 -> evalstart3 : [], cost: 1 4.98/2.39 4.98/2.39 5: evalstart3 -> evalstart4 : [], cost: 1 4.98/2.39 4.98/2.39 6: evalstart4 -> evalstart5 : [], cost: 1 4.98/2.39 4.98/2.39 7: evalstart5 -> evalstart6 : [], cost: 1 4.98/2.39 4.98/2.39 8: evalstart6 -> evalstartbb1in : A'=0, B'=0, [], cost: 1 4.98/2.39 4.98/2.39 9: evalstartbb1in -> evalstartbb2in : [ C>=1+A ], cost: 1 4.98/2.39 4.98/2.39 11: evalstartbb2in -> evalstartbb1in : B'=1+B, [ D>=1+B ], cost: 1 4.98/2.39 4.98/2.39 12: evalstartbb2in -> evalstartbb1in : A'=1+A, B'=1+B, [ D>=1+B && B>=D ], cost: 1 4.98/2.39 4.98/2.39 13: evalstartbb2in -> evalstartbb1in : [ B>=D && D>=1+B ], cost: 1 4.98/2.39 4.98/2.39 14: evalstartbb2in -> evalstartbb1in : A'=1+A, [ B>=D ], cost: 1 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Removed rules with unsatisfiable guard: 4.98/2.39 4.98/2.39 Start location: evalstartstart 4.98/2.39 4.98/2.39 0: evalstartstart -> evalstartbb0in : [], cost: 1 4.98/2.39 4.98/2.39 1: evalstartbb0in -> evalstart0 : [], cost: 1 4.98/2.39 4.98/2.39 2: evalstart0 -> evalstart1 : [], cost: 1 4.98/2.39 4.98/2.39 3: evalstart1 -> evalstart2 : [], cost: 1 4.98/2.39 4.98/2.39 4: evalstart2 -> evalstart3 : [], cost: 1 4.98/2.39 4.98/2.39 5: evalstart3 -> evalstart4 : [], cost: 1 4.98/2.39 4.98/2.39 6: evalstart4 -> evalstart5 : [], cost: 1 4.98/2.39 4.98/2.39 7: evalstart5 -> evalstart6 : [], cost: 1 4.98/2.39 4.98/2.39 8: evalstart6 -> evalstartbb1in : A'=0, B'=0, [], cost: 1 4.98/2.39 4.98/2.39 9: evalstartbb1in -> evalstartbb2in : [ C>=1+A ], cost: 1 4.98/2.39 4.98/2.39 11: evalstartbb2in -> evalstartbb1in : B'=1+B, [ D>=1+B ], cost: 1 4.98/2.39 4.98/2.39 14: evalstartbb2in -> evalstartbb1in : A'=1+A, [ B>=D ], cost: 1 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 ### Simplification by acceleration and chaining ### 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Eliminated locations (on linear paths): 4.98/2.39 4.98/2.39 Start location: evalstartstart 4.98/2.39 4.98/2.39 23: evalstartstart -> evalstartbb1in : A'=0, B'=0, [], cost: 9 4.98/2.39 4.98/2.39 9: evalstartbb1in -> evalstartbb2in : [ C>=1+A ], cost: 1 4.98/2.39 4.98/2.39 11: evalstartbb2in -> evalstartbb1in : B'=1+B, [ D>=1+B ], cost: 1 4.98/2.39 4.98/2.39 14: evalstartbb2in -> evalstartbb1in : A'=1+A, [ B>=D ], cost: 1 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Eliminated locations (on tree-shaped paths): 4.98/2.39 4.98/2.39 Start location: evalstartstart 4.98/2.39 4.98/2.39 23: evalstartstart -> evalstartbb1in : A'=0, B'=0, [], cost: 9 4.98/2.39 4.98/2.39 24: evalstartbb1in -> evalstartbb1in : B'=1+B, [ C>=1+A && D>=1+B ], cost: 2 4.98/2.39 4.98/2.39 25: evalstartbb1in -> evalstartbb1in : A'=1+A, [ C>=1+A && B>=D ], cost: 2 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Accelerating simple loops of location 9. 4.98/2.39 4.98/2.39 Accelerating the following rules: 4.98/2.39 4.98/2.39 24: evalstartbb1in -> evalstartbb1in : B'=1+B, [ C>=1+A && D>=1+B ], cost: 2 4.98/2.39 4.98/2.39 25: evalstartbb1in -> evalstartbb1in : A'=1+A, [ C>=1+A && B>=D ], cost: 2 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Accelerated rule 24 with metering function D-B, yielding the new rule 26. 4.98/2.39 4.98/2.39 Accelerated rule 25 with metering function C-A, yielding the new rule 27. 4.98/2.39 4.98/2.39 Removing the simple loops: 24 25. 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Accelerated all simple loops using metering functions (where possible): 4.98/2.39 4.98/2.39 Start location: evalstartstart 4.98/2.39 4.98/2.39 23: evalstartstart -> evalstartbb1in : A'=0, B'=0, [], cost: 9 4.98/2.39 4.98/2.39 26: evalstartbb1in -> evalstartbb1in : B'=D, [ C>=1+A && D>=1+B ], cost: 2*D-2*B 4.98/2.39 4.98/2.39 27: evalstartbb1in -> evalstartbb1in : A'=C, [ C>=1+A && B>=D ], cost: 2*C-2*A 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Chained accelerated rules (with incoming rules): 4.98/2.39 4.98/2.39 Start location: evalstartstart 4.98/2.39 4.98/2.39 23: evalstartstart -> evalstartbb1in : A'=0, B'=0, [], cost: 9 4.98/2.39 4.98/2.39 28: evalstartstart -> evalstartbb1in : A'=0, B'=D, [ C>=1 && D>=1 ], cost: 9+2*D 4.98/2.39 4.98/2.39 29: evalstartstart -> evalstartbb1in : A'=C, B'=0, [ C>=1 && 0>=D ], cost: 9+2*C 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Removed unreachable locations (and leaf rules with constant cost): 4.98/2.39 4.98/2.39 Start location: evalstartstart 4.98/2.39 4.98/2.39 28: evalstartstart -> evalstartbb1in : A'=0, B'=D, [ C>=1 && D>=1 ], cost: 9+2*D 4.98/2.39 4.98/2.39 29: evalstartstart -> evalstartbb1in : A'=C, B'=0, [ C>=1 && 0>=D ], cost: 9+2*C 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 ### Computing asymptotic complexity ### 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Fully simplified ITS problem 4.98/2.39 4.98/2.39 Start location: evalstartstart 4.98/2.39 4.98/2.39 28: evalstartstart -> evalstartbb1in : A'=0, B'=D, [ C>=1 && D>=1 ], cost: 9+2*D 4.98/2.39 4.98/2.39 29: evalstartstart -> evalstartbb1in : A'=C, B'=0, [ C>=1 && 0>=D ], cost: 9+2*C 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Computing asymptotic complexity for rule 28 4.98/2.39 4.98/2.39 Solved the limit problem by the following transformations: 4.98/2.39 4.98/2.39 Created initial limit problem: 4.98/2.39 4.98/2.39 C (+/+!), 9+2*D (+), D (+/+!) [not solved] 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 removing all constraints (solved by SMT) 4.98/2.39 4.98/2.39 resulting limit problem: [solved] 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 applying transformation rule (C) using substitution {C==1,D==n} 4.98/2.39 4.98/2.39 resulting limit problem: 4.98/2.39 4.98/2.39 [solved] 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Solution: 4.98/2.39 4.98/2.39 C / 1 4.98/2.39 4.98/2.39 D / n 4.98/2.39 4.98/2.39 Resulting cost 9+2*n has complexity: Poly(n^1) 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Found new complexity Poly(n^1). 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 Obtained the following overall complexity (w.r.t. the length of the input n): 4.98/2.39 4.98/2.39 Complexity: Poly(n^1) 4.98/2.39 4.98/2.39 Cpx degree: 1 4.98/2.39 4.98/2.39 Solved cost: 9+2*n 4.98/2.39 4.98/2.39 Rule cost: 9+2*D 4.98/2.39 4.98/2.39 Rule guard: [ C>=1 && D>=1 ] 4.98/2.39 4.98/2.39 4.98/2.39 4.98/2.39 WORST_CASE(Omega(n^1),?) 4.98/2.39 4.98/2.39 4.98/2.39 ---------------------------------------- 4.98/2.39 4.98/2.39 (4) 4.98/2.39 BOUNDS(n^1, INF) 5.20/2.41 EOF