3.75/2.17 WORST_CASE(Omega(n^1), O(n^1)) 4.64/2.18 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.64/2.18 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.64/2.18 4.64/2.18 4.64/2.18 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.64/2.18 4.64/2.18 (0) CpxIntTrs 4.64/2.18 (1) Koat Proof [FINISHED, 10 ms] 4.64/2.18 (2) BOUNDS(1, n^1) 4.64/2.18 (3) Loat Proof [FINISHED, 409 ms] 4.64/2.18 (4) BOUNDS(n^1, INF) 4.64/2.18 4.64/2.18 4.64/2.18 ---------------------------------------- 4.64/2.18 4.64/2.18 (0) 4.64/2.18 Obligation: 4.64/2.18 Complexity Int TRS consisting of the following rules: 4.64/2.18 eval_abc_start(v_a, v_b, v_i_0) -> Com_1(eval_abc_bb0_in(v_a, v_b, v_i_0)) :|: TRUE 4.64/2.18 eval_abc_bb0_in(v_a, v_b, v_i_0) -> Com_1(eval_abc_0(v_a, v_b, v_i_0)) :|: TRUE 4.64/2.18 eval_abc_0(v_a, v_b, v_i_0) -> Com_1(eval_abc_1(v_a, v_b, v_i_0)) :|: TRUE 4.64/2.18 eval_abc_1(v_a, v_b, v_i_0) -> Com_1(eval_abc_2(v_a, v_b, v_i_0)) :|: TRUE 4.64/2.18 eval_abc_2(v_a, v_b, v_i_0) -> Com_1(eval_abc_3(v_a, v_b, v_i_0)) :|: TRUE 4.64/2.18 eval_abc_3(v_a, v_b, v_i_0) -> Com_1(eval_abc_4(v_a, v_b, v_i_0)) :|: TRUE 4.64/2.18 eval_abc_4(v_a, v_b, v_i_0) -> Com_1(eval_abc_bb1_in(v_a, v_b, v_a)) :|: TRUE 4.64/2.18 eval_abc_bb1_in(v_a, v_b, v_i_0) -> Com_1(eval_abc_bb2_in(v_a, v_b, v_i_0)) :|: v_i_0 <= v_b 4.64/2.18 eval_abc_bb1_in(v_a, v_b, v_i_0) -> Com_1(eval_abc_bb3_in(v_a, v_b, v_i_0)) :|: v_i_0 > v_b 4.64/2.18 eval_abc_bb2_in(v_a, v_b, v_i_0) -> Com_1(eval_abc_bb1_in(v_a, v_b, v_i_0 + 1)) :|: TRUE 4.64/2.18 eval_abc_bb3_in(v_a, v_b, v_i_0) -> Com_1(eval_abc_stop(v_a, v_b, v_i_0)) :|: TRUE 4.64/2.18 4.64/2.18 The start-symbols are:[eval_abc_start_3] 4.64/2.18 4.64/2.18 4.64/2.18 ---------------------------------------- 4.64/2.18 4.64/2.18 (1) Koat Proof (FINISHED) 4.64/2.18 YES(?, 2*ar_1 + 2*ar_2 + 13) 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Initial complexity problem: 4.64/2.18 4.64/2.18 1: T: 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcstart(ar_0, ar_1, ar_2) -> Com_1(evalabcbb0in(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb0in(ar_0, ar_1, ar_2) -> Com_1(evalabc0(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabc0(ar_0, ar_1, ar_2) -> Com_1(evalabc1(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabc1(ar_0, ar_1, ar_2) -> Com_1(evalabc2(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabc2(ar_0, ar_1, ar_2) -> Com_1(evalabc3(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabc3(ar_0, ar_1, ar_2) -> Com_1(evalabc4(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabc4(ar_0, ar_1, ar_2) -> Com_1(evalabcbb1in(ar_1, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb2in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb1in(ar_0 + 1, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb3in(ar_0, ar_1, ar_2) -> Com_1(evalabcstop(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalabcstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.64/2.18 4.64/2.18 start location: koat_start 4.64/2.18 4.64/2.18 leaf cost: 0 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.64/2.18 4.64/2.18 2: T: 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabcstart(ar_0, ar_1, ar_2) -> Com_1(evalabcbb0in(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabcbb0in(ar_0, ar_1, ar_2) -> Com_1(evalabc0(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc0(ar_0, ar_1, ar_2) -> Com_1(evalabc1(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc1(ar_0, ar_1, ar_2) -> Com_1(evalabc2(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc2(ar_0, ar_1, ar_2) -> Com_1(evalabc3(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc3(ar_0, ar_1, ar_2) -> Com_1(evalabc4(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc4(ar_0, ar_1, ar_2) -> Com_1(evalabcbb1in(ar_1, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb2in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb1in(ar_0 + 1, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb3in(ar_0, ar_1, ar_2) -> Com_1(evalabcstop(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalabcstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.64/2.18 4.64/2.18 start location: koat_start 4.64/2.18 4.64/2.18 leaf cost: 0 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 A polynomial rank function with 4.64/2.18 4.64/2.18 Pol(evalabcstart) = 2 4.64/2.18 4.64/2.18 Pol(evalabcbb0in) = 2 4.64/2.18 4.64/2.18 Pol(evalabc0) = 2 4.64/2.18 4.64/2.18 Pol(evalabc1) = 2 4.64/2.18 4.64/2.18 Pol(evalabc2) = 2 4.64/2.18 4.64/2.18 Pol(evalabc3) = 2 4.64/2.18 4.64/2.18 Pol(evalabc4) = 2 4.64/2.18 4.64/2.18 Pol(evalabcbb1in) = 2 4.64/2.18 4.64/2.18 Pol(evalabcbb2in) = 2 4.64/2.18 4.64/2.18 Pol(evalabcbb3in) = 1 4.64/2.18 4.64/2.18 Pol(evalabcstop) = 0 4.64/2.18 4.64/2.18 Pol(koat_start) = 2 4.64/2.18 4.64/2.18 orients all transitions weakly and the transitions 4.64/2.18 4.64/2.18 evalabcbb3in(ar_0, ar_1, ar_2) -> Com_1(evalabcstop(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 4.64/2.18 4.64/2.18 strictly and produces the following problem: 4.64/2.18 4.64/2.18 3: T: 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabcstart(ar_0, ar_1, ar_2) -> Com_1(evalabcbb0in(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabcbb0in(ar_0, ar_1, ar_2) -> Com_1(evalabc0(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc0(ar_0, ar_1, ar_2) -> Com_1(evalabc1(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc1(ar_0, ar_1, ar_2) -> Com_1(evalabc2(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc2(ar_0, ar_1, ar_2) -> Com_1(evalabc3(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc3(ar_0, ar_1, ar_2) -> Com_1(evalabc4(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc4(ar_0, ar_1, ar_2) -> Com_1(evalabcbb1in(ar_1, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.64/2.18 4.64/2.18 (Comp: 2, Cost: 1) evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb2in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb1in(ar_0 + 1, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 2, Cost: 1) evalabcbb3in(ar_0, ar_1, ar_2) -> Com_1(evalabcstop(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalabcstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.64/2.18 4.64/2.18 start location: koat_start 4.64/2.18 4.64/2.18 leaf cost: 0 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 A polynomial rank function with 4.64/2.18 4.64/2.18 Pol(evalabcstart) = -V_2 + V_3 + 1 4.64/2.18 4.64/2.18 Pol(evalabcbb0in) = -V_2 + V_3 + 1 4.64/2.18 4.64/2.18 Pol(evalabc0) = -V_2 + V_3 + 1 4.64/2.18 4.64/2.18 Pol(evalabc1) = -V_2 + V_3 + 1 4.64/2.18 4.64/2.18 Pol(evalabc2) = -V_2 + V_3 + 1 4.64/2.18 4.64/2.18 Pol(evalabc3) = -V_2 + V_3 + 1 4.64/2.18 4.64/2.18 Pol(evalabc4) = -V_2 + V_3 + 1 4.64/2.18 4.64/2.18 Pol(evalabcbb1in) = -V_1 + V_3 + 1 4.64/2.18 4.64/2.18 Pol(evalabcbb2in) = -V_1 + V_3 4.64/2.18 4.64/2.18 Pol(evalabcbb3in) = -V_1 + V_3 4.64/2.18 4.64/2.18 Pol(evalabcstop) = -V_1 + V_3 4.64/2.18 4.64/2.18 Pol(koat_start) = -V_2 + V_3 + 1 4.64/2.18 4.64/2.18 orients all transitions weakly and the transition 4.64/2.18 4.64/2.18 evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.64/2.18 4.64/2.18 strictly and produces the following problem: 4.64/2.18 4.64/2.18 4: T: 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabcstart(ar_0, ar_1, ar_2) -> Com_1(evalabcbb0in(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabcbb0in(ar_0, ar_1, ar_2) -> Com_1(evalabc0(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc0(ar_0, ar_1, ar_2) -> Com_1(evalabc1(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc1(ar_0, ar_1, ar_2) -> Com_1(evalabc2(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc2(ar_0, ar_1, ar_2) -> Com_1(evalabc3(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc3(ar_0, ar_1, ar_2) -> Com_1(evalabc4(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc4(ar_0, ar_1, ar_2) -> Com_1(evalabcbb1in(ar_1, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ar_1 + ar_2 + 1, Cost: 1) evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.64/2.18 4.64/2.18 (Comp: 2, Cost: 1) evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 4.64/2.18 4.64/2.18 (Comp: ?, Cost: 1) evalabcbb2in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb1in(ar_0 + 1, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 2, Cost: 1) evalabcbb3in(ar_0, ar_1, ar_2) -> Com_1(evalabcstop(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalabcstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.64/2.18 4.64/2.18 start location: koat_start 4.64/2.18 4.64/2.18 leaf cost: 0 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Repeatedly propagating knowledge in problem 4 produces the following problem: 4.64/2.18 4.64/2.18 5: T: 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabcstart(ar_0, ar_1, ar_2) -> Com_1(evalabcbb0in(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabcbb0in(ar_0, ar_1, ar_2) -> Com_1(evalabc0(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc0(ar_0, ar_1, ar_2) -> Com_1(evalabc1(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc1(ar_0, ar_1, ar_2) -> Com_1(evalabc2(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc2(ar_0, ar_1, ar_2) -> Com_1(evalabc3(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc3(ar_0, ar_1, ar_2) -> Com_1(evalabc4(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 1) evalabc4(ar_0, ar_1, ar_2) -> Com_1(evalabcbb1in(ar_1, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: ar_1 + ar_2 + 1, Cost: 1) evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.64/2.18 4.64/2.18 (Comp: 2, Cost: 1) evalabcbb1in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 ] 4.64/2.18 4.64/2.18 (Comp: ar_1 + ar_2 + 1, Cost: 1) evalabcbb2in(ar_0, ar_1, ar_2) -> Com_1(evalabcbb1in(ar_0 + 1, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 2, Cost: 1) evalabcbb3in(ar_0, ar_1, ar_2) -> Com_1(evalabcstop(ar_0, ar_1, ar_2)) 4.64/2.18 4.64/2.18 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalabcstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.64/2.18 4.64/2.18 start location: koat_start 4.64/2.18 4.64/2.18 leaf cost: 0 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Complexity upper bound 2*ar_1 + 2*ar_2 + 13 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Time: 0.078 sec (SMT: 0.067 sec) 4.64/2.18 4.64/2.18 4.64/2.18 ---------------------------------------- 4.64/2.18 4.64/2.18 (2) 4.64/2.18 BOUNDS(1, n^1) 4.64/2.18 4.64/2.18 ---------------------------------------- 4.64/2.18 4.64/2.18 (3) Loat Proof (FINISHED) 4.64/2.18 4.64/2.18 4.64/2.18 ### Pre-processing the ITS problem ### 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Initial linear ITS problem 4.64/2.18 4.64/2.18 Start location: evalabcstart 4.64/2.18 4.64/2.18 0: evalabcstart -> evalabcbb0in : [], cost: 1 4.64/2.18 4.64/2.18 1: evalabcbb0in -> evalabc0 : [], cost: 1 4.64/2.18 4.64/2.18 2: evalabc0 -> evalabc1 : [], cost: 1 4.64/2.18 4.64/2.18 3: evalabc1 -> evalabc2 : [], cost: 1 4.64/2.18 4.64/2.18 4: evalabc2 -> evalabc3 : [], cost: 1 4.64/2.18 4.64/2.18 5: evalabc3 -> evalabc4 : [], cost: 1 4.64/2.18 4.64/2.18 6: evalabc4 -> evalabcbb1in : A'=B, [], cost: 1 4.64/2.18 4.64/2.18 7: evalabcbb1in -> evalabcbb2in : [ C>=A ], cost: 1 4.64/2.18 4.64/2.18 8: evalabcbb1in -> evalabcbb3in : [ A>=1+C ], cost: 1 4.64/2.18 4.64/2.18 9: evalabcbb2in -> evalabcbb1in : A'=1+A, [], cost: 1 4.64/2.18 4.64/2.18 10: evalabcbb3in -> evalabcstop : [], cost: 1 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Removed unreachable and leaf rules: 4.64/2.18 4.64/2.18 Start location: evalabcstart 4.64/2.18 4.64/2.18 0: evalabcstart -> evalabcbb0in : [], cost: 1 4.64/2.18 4.64/2.18 1: evalabcbb0in -> evalabc0 : [], cost: 1 4.64/2.18 4.64/2.18 2: evalabc0 -> evalabc1 : [], cost: 1 4.64/2.18 4.64/2.18 3: evalabc1 -> evalabc2 : [], cost: 1 4.64/2.18 4.64/2.18 4: evalabc2 -> evalabc3 : [], cost: 1 4.64/2.18 4.64/2.18 5: evalabc3 -> evalabc4 : [], cost: 1 4.64/2.18 4.64/2.18 6: evalabc4 -> evalabcbb1in : A'=B, [], cost: 1 4.64/2.18 4.64/2.18 7: evalabcbb1in -> evalabcbb2in : [ C>=A ], cost: 1 4.64/2.18 4.64/2.18 9: evalabcbb2in -> evalabcbb1in : A'=1+A, [], cost: 1 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 ### Simplification by acceleration and chaining ### 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Eliminated locations (on linear paths): 4.64/2.18 4.64/2.18 Start location: evalabcstart 4.64/2.18 4.64/2.18 16: evalabcstart -> evalabcbb1in : A'=B, [], cost: 7 4.64/2.18 4.64/2.18 17: evalabcbb1in -> evalabcbb1in : A'=1+A, [ C>=A ], cost: 2 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Accelerating simple loops of location 7. 4.64/2.18 4.64/2.18 Accelerating the following rules: 4.64/2.18 4.64/2.18 17: evalabcbb1in -> evalabcbb1in : A'=1+A, [ C>=A ], cost: 2 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Accelerated rule 17 with metering function 1+C-A, yielding the new rule 18. 4.64/2.18 4.64/2.18 Removing the simple loops: 17. 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Accelerated all simple loops using metering functions (where possible): 4.64/2.18 4.64/2.18 Start location: evalabcstart 4.64/2.18 4.64/2.18 16: evalabcstart -> evalabcbb1in : A'=B, [], cost: 7 4.64/2.18 4.64/2.18 18: evalabcbb1in -> evalabcbb1in : A'=1+C, [ C>=A ], cost: 2+2*C-2*A 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Chained accelerated rules (with incoming rules): 4.64/2.18 4.64/2.18 Start location: evalabcstart 4.64/2.18 4.64/2.18 16: evalabcstart -> evalabcbb1in : A'=B, [], cost: 7 4.64/2.18 4.64/2.18 19: evalabcstart -> evalabcbb1in : A'=1+C, [ C>=B ], cost: 9+2*C-2*B 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Removed unreachable locations (and leaf rules with constant cost): 4.64/2.18 4.64/2.18 Start location: evalabcstart 4.64/2.18 4.64/2.18 19: evalabcstart -> evalabcbb1in : A'=1+C, [ C>=B ], cost: 9+2*C-2*B 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 ### Computing asymptotic complexity ### 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Fully simplified ITS problem 4.64/2.18 4.64/2.18 Start location: evalabcstart 4.64/2.18 4.64/2.18 19: evalabcstart -> evalabcbb1in : A'=1+C, [ C>=B ], cost: 9+2*C-2*B 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Computing asymptotic complexity for rule 19 4.64/2.18 4.64/2.18 Solved the limit problem by the following transformations: 4.64/2.18 4.64/2.18 Created initial limit problem: 4.64/2.18 4.64/2.18 9+2*C-2*B (+), 1+C-B (+/+!) [not solved] 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 removing all constraints (solved by SMT) 4.64/2.18 4.64/2.18 resulting limit problem: [solved] 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 applying transformation rule (C) using substitution {C==0,B==-n} 4.64/2.18 4.64/2.18 resulting limit problem: 4.64/2.18 4.64/2.18 [solved] 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Solution: 4.64/2.18 4.64/2.18 C / 0 4.64/2.18 4.64/2.18 B / -n 4.64/2.18 4.64/2.18 Resulting cost 9+2*n has complexity: Poly(n^1) 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Found new complexity Poly(n^1). 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 Obtained the following overall complexity (w.r.t. the length of the input n): 4.64/2.18 4.64/2.18 Complexity: Poly(n^1) 4.64/2.18 4.64/2.18 Cpx degree: 1 4.64/2.18 4.64/2.18 Solved cost: 9+2*n 4.64/2.18 4.64/2.18 Rule cost: 9+2*C-2*B 4.64/2.18 4.64/2.18 Rule guard: [ C>=B ] 4.64/2.18 4.64/2.18 4.64/2.18 4.64/2.18 WORST_CASE(Omega(n^1),?) 4.64/2.18 4.64/2.18 4.64/2.18 ---------------------------------------- 4.64/2.18 4.64/2.18 (4) 4.64/2.18 BOUNDS(n^1, INF) 4.64/2.21 EOF