4.64/2.41 WORST_CASE(Omega(n^1), O(n^1)) 4.87/2.42 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.87/2.42 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.87/2.42 4.87/2.42 4.87/2.42 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.87/2.42 4.87/2.42 (0) CpxIntTrs 4.87/2.42 (1) Koat Proof [FINISHED, 116 ms] 4.87/2.42 (2) BOUNDS(1, n^1) 4.87/2.42 (3) Loat Proof [FINISHED, 629 ms] 4.87/2.42 (4) BOUNDS(n^1, INF) 4.87/2.42 4.87/2.42 4.87/2.42 ---------------------------------------- 4.87/2.42 4.87/2.42 (0) 4.87/2.42 Obligation: 4.87/2.42 Complexity Int TRS consisting of the following rules: 4.87/2.42 eval_start_start(v__0, v_flag_0, v_n) -> Com_1(eval_start_bb0_in(v__0, v_flag_0, v_n)) :|: TRUE 4.87/2.42 eval_start_bb0_in(v__0, v_flag_0, v_n) -> Com_1(eval_start_0(v__0, v_flag_0, v_n)) :|: TRUE 4.87/2.42 eval_start_0(v__0, v_flag_0, v_n) -> Com_1(eval_start_1(v__0, v_flag_0, v_n)) :|: TRUE 4.87/2.42 eval_start_1(v__0, v_flag_0, v_n) -> Com_1(eval_start_2(v__0, v_flag_0, v_n)) :|: TRUE 4.87/2.42 eval_start_2(v__0, v_flag_0, v_n) -> Com_1(eval_start_3(v__0, v_flag_0, v_n)) :|: TRUE 4.87/2.42 eval_start_3(v__0, v_flag_0, v_n) -> Com_1(eval_start_4(v__0, v_flag_0, v_n)) :|: TRUE 4.87/2.42 eval_start_4(v__0, v_flag_0, v_n) -> Com_1(eval_start_5(v__0, v_flag_0, v_n)) :|: TRUE 4.87/2.42 eval_start_5(v__0, v_flag_0, v_n) -> Com_1(eval_start_bb1_in(v_n, 1, v_n)) :|: TRUE 4.87/2.42 eval_start_bb1_in(v__0, v_flag_0, v_n) -> Com_1(eval_start_bb2_in(v__0, v_flag_0, v_n)) :|: v_flag_0 > 0 4.87/2.42 eval_start_bb1_in(v__0, v_flag_0, v_n) -> Com_1(eval_start_bb3_in(v__0, v_flag_0, v_n)) :|: v_flag_0 <= 0 4.87/2.42 eval_start_bb2_in(v__0, v_flag_0, v_n) -> Com_1(eval_start_bb1_in(v__0 - 1, 1, v_n)) :|: v__0 > 0 4.87/2.42 eval_start_bb2_in(v__0, v_flag_0, v_n) -> Com_1(eval_start_bb1_in(v__0, 1, v_n)) :|: v__0 > 0 && v__0 <= 0 4.87/2.42 eval_start_bb2_in(v__0, v_flag_0, v_n) -> Com_1(eval_start_bb1_in(v__0 - 1, 0, v_n)) :|: v__0 <= 0 && v__0 > 0 4.87/2.42 eval_start_bb2_in(v__0, v_flag_0, v_n) -> Com_1(eval_start_bb1_in(v__0, 0, v_n)) :|: v__0 <= 0 4.87/2.42 eval_start_bb3_in(v__0, v_flag_0, v_n) -> Com_1(eval_start_stop(v__0, v_flag_0, v_n)) :|: TRUE 4.87/2.42 4.87/2.42 The start-symbols are:[eval_start_start_3] 4.87/2.42 4.87/2.42 4.87/2.42 ---------------------------------------- 4.87/2.42 4.87/2.42 (1) Koat Proof (FINISHED) 4.87/2.42 YES(?, 2*ar_1 + 14) 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Initial complexity problem: 4.87/2.42 4.87/2.42 1: T: 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_1, ar_1, 1)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1, 1)) [ ar_0 >= 1 /\ 0 >= ar_0 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 - 1, ar_1, 0)) [ 0 >= ar_0 /\ ar_0 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.87/2.42 4.87/2.42 start location: koat_start 4.87/2.42 4.87/2.42 leaf cost: 0 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Testing for reachability in the complexity graph removes the following transitions from problem 1: 4.87/2.42 4.87/2.42 evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1, 1)) [ ar_0 >= 1 /\ 0 >= ar_0 ] 4.87/2.42 4.87/2.42 evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 - 1, ar_1, 0)) [ 0 >= ar_0 /\ ar_0 >= 1 ] 4.87/2.42 4.87/2.42 We thus obtain the following problem: 4.87/2.42 4.87/2.42 2: T: 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_1, ar_1, 1)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.87/2.42 4.87/2.42 start location: koat_start 4.87/2.42 4.87/2.42 leaf cost: 0 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Repeatedly propagating knowledge in problem 2 produces the following problem: 4.87/2.42 4.87/2.42 3: T: 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_1, ar_1, 1)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.87/2.42 4.87/2.42 start location: koat_start 4.87/2.42 4.87/2.42 leaf cost: 0 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 A polynomial rank function with 4.87/2.42 4.87/2.42 Pol(evalstartbb3in) = 1 4.87/2.42 4.87/2.42 Pol(evalstartstop) = 0 4.87/2.42 4.87/2.42 Pol(evalstartbb1in) = 2 4.87/2.42 4.87/2.42 Pol(evalstartbb2in) = 2 4.87/2.42 4.87/2.42 Pol(evalstart5) = 2 4.87/2.42 4.87/2.42 Pol(evalstart4) = 2 4.87/2.42 4.87/2.42 Pol(evalstart3) = 2 4.87/2.42 4.87/2.42 Pol(evalstart2) = 2 4.87/2.42 4.87/2.42 Pol(evalstart1) = 2 4.87/2.42 4.87/2.42 Pol(evalstart0) = 2 4.87/2.42 4.87/2.42 Pol(evalstartbb0in) = 2 4.87/2.42 4.87/2.42 Pol(evalstartstart) = 2 4.87/2.42 4.87/2.42 Pol(koat_start) = 2 4.87/2.42 4.87/2.42 orients all transitions weakly and the transitions 4.87/2.42 4.87/2.42 evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.87/2.42 4.87/2.42 strictly and produces the following problem: 4.87/2.42 4.87/2.42 4: T: 4.87/2.42 4.87/2.42 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_1, ar_1, 1)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.87/2.42 4.87/2.42 start location: koat_start 4.87/2.42 4.87/2.42 leaf cost: 0 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 A polynomial rank function with 4.87/2.42 4.87/2.42 Pol(evalstartbb3in) = V_3 4.87/2.42 4.87/2.42 Pol(evalstartstop) = V_3 4.87/2.42 4.87/2.42 Pol(evalstartbb1in) = V_3 4.87/2.42 4.87/2.42 Pol(evalstartbb2in) = 1 4.87/2.42 4.87/2.42 Pol(evalstart5) = 1 4.87/2.42 4.87/2.42 Pol(evalstart4) = 1 4.87/2.42 4.87/2.42 Pol(evalstart3) = 1 4.87/2.42 4.87/2.42 Pol(evalstart2) = 1 4.87/2.42 4.87/2.42 Pol(evalstart1) = 1 4.87/2.42 4.87/2.42 Pol(evalstart0) = 1 4.87/2.42 4.87/2.42 Pol(evalstartbb0in) = 1 4.87/2.42 4.87/2.42 Pol(evalstartstart) = 1 4.87/2.42 4.87/2.42 Pol(koat_start) = 1 4.87/2.42 4.87/2.42 orients all transitions weakly and the transition 4.87/2.42 4.87/2.42 evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 4.87/2.42 4.87/2.42 strictly and produces the following problem: 4.87/2.42 4.87/2.42 5: T: 4.87/2.42 4.87/2.42 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_1, ar_1, 1)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.87/2.42 4.87/2.42 start location: koat_start 4.87/2.42 4.87/2.42 leaf cost: 0 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 A polynomial rank function with 4.87/2.42 4.87/2.42 Pol(evalstartbb3in) = V_1 4.87/2.42 4.87/2.42 Pol(evalstartstop) = V_1 4.87/2.42 4.87/2.42 Pol(evalstartbb1in) = V_1 4.87/2.42 4.87/2.42 Pol(evalstartbb2in) = V_1 4.87/2.42 4.87/2.42 Pol(evalstart5) = V_2 4.87/2.42 4.87/2.42 Pol(evalstart4) = V_2 4.87/2.42 4.87/2.42 Pol(evalstart3) = V_2 4.87/2.42 4.87/2.42 Pol(evalstart2) = V_2 4.87/2.42 4.87/2.42 Pol(evalstart1) = V_2 4.87/2.42 4.87/2.42 Pol(evalstart0) = V_2 4.87/2.42 4.87/2.42 Pol(evalstartbb0in) = V_2 4.87/2.42 4.87/2.42 Pol(evalstartstart) = V_2 4.87/2.42 4.87/2.42 Pol(koat_start) = V_2 4.87/2.42 4.87/2.42 orients all transitions weakly and the transition 4.87/2.42 4.87/2.42 evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 4.87/2.42 4.87/2.42 strictly and produces the following problem: 4.87/2.42 4.87/2.42 6: T: 4.87/2.42 4.87/2.42 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 4.87/2.42 4.87/2.42 (Comp: ar_1, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_1, ar_1, 1)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.87/2.42 4.87/2.42 start location: koat_start 4.87/2.42 4.87/2.42 leaf cost: 0 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Repeatedly propagating knowledge in problem 6 produces the following problem: 4.87/2.42 4.87/2.42 7: T: 4.87/2.42 4.87/2.42 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ 0 >= ar_2 ] 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1, 0)) [ 0 >= ar_0 ] 4.87/2.42 4.87/2.42 (Comp: ar_1, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 - 1, ar_1, 1)) [ ar_0 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: ar_1 + 1, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_1, ar_1, 1)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) 4.87/2.42 4.87/2.42 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.87/2.42 4.87/2.42 start location: koat_start 4.87/2.42 4.87/2.42 leaf cost: 0 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Complexity upper bound 2*ar_1 + 14 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Time: 0.112 sec (SMT: 0.096 sec) 4.87/2.42 4.87/2.42 4.87/2.42 ---------------------------------------- 4.87/2.42 4.87/2.42 (2) 4.87/2.42 BOUNDS(1, n^1) 4.87/2.42 4.87/2.42 ---------------------------------------- 4.87/2.42 4.87/2.42 (3) Loat Proof (FINISHED) 4.87/2.42 4.87/2.42 4.87/2.42 ### Pre-processing the ITS problem ### 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Initial linear ITS problem 4.87/2.42 4.87/2.42 Start location: evalstartstart 4.87/2.42 4.87/2.42 0: evalstartstart -> evalstartbb0in : [], cost: 1 4.87/2.42 4.87/2.42 1: evalstartbb0in -> evalstart0 : [], cost: 1 4.87/2.42 4.87/2.42 2: evalstart0 -> evalstart1 : [], cost: 1 4.87/2.42 4.87/2.42 3: evalstart1 -> evalstart2 : [], cost: 1 4.87/2.42 4.87/2.42 4: evalstart2 -> evalstart3 : [], cost: 1 4.87/2.42 4.87/2.42 5: evalstart3 -> evalstart4 : [], cost: 1 4.87/2.42 4.87/2.42 6: evalstart4 -> evalstart5 : [], cost: 1 4.87/2.42 4.87/2.42 7: evalstart5 -> evalstartbb1in : A'=B, C'=1, [], cost: 1 4.87/2.42 4.87/2.42 8: evalstartbb1in -> evalstartbb2in : [ C>=1 ], cost: 1 4.87/2.42 4.87/2.42 9: evalstartbb1in -> evalstartbb3in : [ 0>=C ], cost: 1 4.87/2.42 4.87/2.42 10: evalstartbb2in -> evalstartbb1in : A'=-1+A, C'=1, [ A>=1 ], cost: 1 4.87/2.42 4.87/2.42 11: evalstartbb2in -> evalstartbb1in : C'=1, [ A>=1 && 0>=A ], cost: 1 4.87/2.42 4.87/2.42 12: evalstartbb2in -> evalstartbb1in : A'=-1+A, C'=0, [ 0>=A && A>=1 ], cost: 1 4.87/2.42 4.87/2.42 13: evalstartbb2in -> evalstartbb1in : C'=0, [ 0>=A ], cost: 1 4.87/2.42 4.87/2.42 14: evalstartbb3in -> evalstartstop : [], cost: 1 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Removed unreachable and leaf rules: 4.87/2.42 4.87/2.42 Start location: evalstartstart 4.87/2.42 4.87/2.42 0: evalstartstart -> evalstartbb0in : [], cost: 1 4.87/2.42 4.87/2.42 1: evalstartbb0in -> evalstart0 : [], cost: 1 4.87/2.42 4.87/2.42 2: evalstart0 -> evalstart1 : [], cost: 1 4.87/2.42 4.87/2.42 3: evalstart1 -> evalstart2 : [], cost: 1 4.87/2.42 4.87/2.42 4: evalstart2 -> evalstart3 : [], cost: 1 4.87/2.42 4.87/2.42 5: evalstart3 -> evalstart4 : [], cost: 1 4.87/2.42 4.87/2.42 6: evalstart4 -> evalstart5 : [], cost: 1 4.87/2.42 4.87/2.42 7: evalstart5 -> evalstartbb1in : A'=B, C'=1, [], cost: 1 4.87/2.42 4.87/2.42 8: evalstartbb1in -> evalstartbb2in : [ C>=1 ], cost: 1 4.87/2.42 4.87/2.42 10: evalstartbb2in -> evalstartbb1in : A'=-1+A, C'=1, [ A>=1 ], cost: 1 4.87/2.42 4.87/2.42 11: evalstartbb2in -> evalstartbb1in : C'=1, [ A>=1 && 0>=A ], cost: 1 4.87/2.42 4.87/2.42 12: evalstartbb2in -> evalstartbb1in : A'=-1+A, C'=0, [ 0>=A && A>=1 ], cost: 1 4.87/2.42 4.87/2.42 13: evalstartbb2in -> evalstartbb1in : C'=0, [ 0>=A ], cost: 1 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Removed rules with unsatisfiable guard: 4.87/2.42 4.87/2.42 Start location: evalstartstart 4.87/2.42 4.87/2.42 0: evalstartstart -> evalstartbb0in : [], cost: 1 4.87/2.42 4.87/2.42 1: evalstartbb0in -> evalstart0 : [], cost: 1 4.87/2.42 4.87/2.42 2: evalstart0 -> evalstart1 : [], cost: 1 4.87/2.42 4.87/2.42 3: evalstart1 -> evalstart2 : [], cost: 1 4.87/2.42 4.87/2.42 4: evalstart2 -> evalstart3 : [], cost: 1 4.87/2.42 4.87/2.42 5: evalstart3 -> evalstart4 : [], cost: 1 4.87/2.42 4.87/2.42 6: evalstart4 -> evalstart5 : [], cost: 1 4.87/2.42 4.87/2.42 7: evalstart5 -> evalstartbb1in : A'=B, C'=1, [], cost: 1 4.87/2.42 4.87/2.42 8: evalstartbb1in -> evalstartbb2in : [ C>=1 ], cost: 1 4.87/2.42 4.87/2.42 10: evalstartbb2in -> evalstartbb1in : A'=-1+A, C'=1, [ A>=1 ], cost: 1 4.87/2.42 4.87/2.42 13: evalstartbb2in -> evalstartbb1in : C'=0, [ 0>=A ], cost: 1 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 ### Simplification by acceleration and chaining ### 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Eliminated locations (on linear paths): 4.87/2.42 4.87/2.42 Start location: evalstartstart 4.87/2.42 4.87/2.42 21: evalstartstart -> evalstartbb1in : A'=B, C'=1, [], cost: 8 4.87/2.42 4.87/2.42 8: evalstartbb1in -> evalstartbb2in : [ C>=1 ], cost: 1 4.87/2.42 4.87/2.42 10: evalstartbb2in -> evalstartbb1in : A'=-1+A, C'=1, [ A>=1 ], cost: 1 4.87/2.42 4.87/2.42 13: evalstartbb2in -> evalstartbb1in : C'=0, [ 0>=A ], cost: 1 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Eliminated locations (on tree-shaped paths): 4.87/2.42 4.87/2.42 Start location: evalstartstart 4.87/2.42 4.87/2.42 21: evalstartstart -> evalstartbb1in : A'=B, C'=1, [], cost: 8 4.87/2.42 4.87/2.42 22: evalstartbb1in -> evalstartbb1in : A'=-1+A, C'=1, [ C>=1 && A>=1 ], cost: 2 4.87/2.42 4.87/2.42 23: evalstartbb1in -> evalstartbb1in : C'=0, [ C>=1 && 0>=A ], cost: 2 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Accelerating simple loops of location 8. 4.87/2.42 4.87/2.42 Accelerating the following rules: 4.87/2.42 4.87/2.42 22: evalstartbb1in -> evalstartbb1in : A'=-1+A, C'=1, [ C>=1 && A>=1 ], cost: 2 4.87/2.42 4.87/2.42 23: evalstartbb1in -> evalstartbb1in : C'=0, [ C>=1 && 0>=A ], cost: 2 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Accelerated rule 22 with metering function A, yielding the new rule 24. 4.87/2.42 4.87/2.42 Found no metering function for rule 23. 4.87/2.42 4.87/2.42 Removing the simple loops: 22. 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Accelerated all simple loops using metering functions (where possible): 4.87/2.42 4.87/2.42 Start location: evalstartstart 4.87/2.42 4.87/2.42 21: evalstartstart -> evalstartbb1in : A'=B, C'=1, [], cost: 8 4.87/2.42 4.87/2.42 23: evalstartbb1in -> evalstartbb1in : C'=0, [ C>=1 && 0>=A ], cost: 2 4.87/2.42 4.87/2.42 24: evalstartbb1in -> evalstartbb1in : A'=0, C'=1, [ C>=1 && A>=1 ], cost: 2*A 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Chained accelerated rules (with incoming rules): 4.87/2.42 4.87/2.42 Start location: evalstartstart 4.87/2.42 4.87/2.42 21: evalstartstart -> evalstartbb1in : A'=B, C'=1, [], cost: 8 4.87/2.42 4.87/2.42 25: evalstartstart -> evalstartbb1in : A'=B, C'=0, [ 0>=B ], cost: 10 4.87/2.42 4.87/2.42 26: evalstartstart -> evalstartbb1in : A'=0, C'=1, [ B>=1 ], cost: 8+2*B 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Removed unreachable locations (and leaf rules with constant cost): 4.87/2.42 4.87/2.42 Start location: evalstartstart 4.87/2.42 4.87/2.42 26: evalstartstart -> evalstartbb1in : A'=0, C'=1, [ B>=1 ], cost: 8+2*B 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 ### Computing asymptotic complexity ### 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Fully simplified ITS problem 4.87/2.42 4.87/2.42 Start location: evalstartstart 4.87/2.42 4.87/2.42 26: evalstartstart -> evalstartbb1in : A'=0, C'=1, [ B>=1 ], cost: 8+2*B 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Computing asymptotic complexity for rule 26 4.87/2.42 4.87/2.42 Solved the limit problem by the following transformations: 4.87/2.42 4.87/2.42 Created initial limit problem: 4.87/2.42 4.87/2.42 8+2*B (+), B (+/+!) [not solved] 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 removing all constraints (solved by SMT) 4.87/2.42 4.87/2.42 resulting limit problem: [solved] 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 applying transformation rule (C) using substitution {B==n} 4.87/2.42 4.87/2.42 resulting limit problem: 4.87/2.42 4.87/2.42 [solved] 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Solution: 4.87/2.42 4.87/2.42 B / n 4.87/2.42 4.87/2.42 Resulting cost 8+2*n has complexity: Poly(n^1) 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Found new complexity Poly(n^1). 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 Obtained the following overall complexity (w.r.t. the length of the input n): 4.87/2.42 4.87/2.42 Complexity: Poly(n^1) 4.87/2.42 4.87/2.42 Cpx degree: 1 4.87/2.42 4.87/2.42 Solved cost: 8+2*n 4.87/2.42 4.87/2.42 Rule cost: 8+2*B 4.87/2.42 4.87/2.42 Rule guard: [ B>=1 ] 4.87/2.42 4.87/2.42 4.87/2.42 4.87/2.42 WORST_CASE(Omega(n^1),?) 4.87/2.42 4.87/2.42 4.87/2.42 ---------------------------------------- 4.87/2.42 4.87/2.42 (4) 4.87/2.42 BOUNDS(n^1, INF) 4.89/3.64 EOF