3.48/2.15 WORST_CASE(Omega(n^1), O(n^1)) 3.48/2.16 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.48/2.16 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.48/2.16 3.48/2.16 3.48/2.16 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 3.48/2.16 3.48/2.16 (0) CpxIntTrs 3.48/2.16 (1) Koat Proof [FINISHED, 11 ms] 3.48/2.16 (2) BOUNDS(1, n^1) 3.48/2.16 (3) Loat Proof [FINISHED, 437 ms] 3.48/2.16 (4) BOUNDS(n^1, INF) 3.48/2.16 3.48/2.16 3.48/2.16 ---------------------------------------- 3.48/2.16 3.48/2.16 (0) 3.48/2.16 Obligation: 3.48/2.16 Complexity Int TRS consisting of the following rules: 3.48/2.16 eval_start_start(v_n, v_x_0) -> Com_1(eval_start_bb0_in(v_n, v_x_0)) :|: TRUE 3.48/2.16 eval_start_bb0_in(v_n, v_x_0) -> Com_1(eval_start_0(v_n, v_x_0)) :|: TRUE 3.48/2.16 eval_start_0(v_n, v_x_0) -> Com_1(eval_start_1(v_n, v_x_0)) :|: TRUE 3.48/2.16 eval_start_1(v_n, v_x_0) -> Com_1(eval_start_2(v_n, v_x_0)) :|: TRUE 3.48/2.16 eval_start_2(v_n, v_x_0) -> Com_1(eval_start_3(v_n, v_x_0)) :|: TRUE 3.48/2.16 eval_start_3(v_n, v_x_0) -> Com_1(eval_start_4(v_n, v_x_0)) :|: TRUE 3.48/2.16 eval_start_4(v_n, v_x_0) -> Com_1(eval_start_bb1_in(v_n, 0)) :|: TRUE 3.48/2.16 eval_start_bb1_in(v_n, v_x_0) -> Com_1(eval_start_bb2_in(v_n, v_x_0)) :|: v_x_0 < v_n 3.48/2.16 eval_start_bb1_in(v_n, v_x_0) -> Com_1(eval_start_bb3_in(v_n, v_x_0)) :|: v_x_0 >= v_n 3.48/2.16 eval_start_bb2_in(v_n, v_x_0) -> Com_1(eval_start_5(v_n, v_x_0)) :|: TRUE 3.48/2.16 eval_start_5(v_n, v_x_0) -> Com_1(eval_start_6(v_n, v_x_0)) :|: TRUE 3.48/2.16 eval_start_6(v_n, v_x_0) -> Com_1(eval_start_bb1_in(v_n, v_x_0 + 1)) :|: TRUE 3.48/2.16 eval_start_bb3_in(v_n, v_x_0) -> Com_1(eval_start_stop(v_n, v_x_0)) :|: TRUE 3.48/2.16 3.48/2.16 The start-symbols are:[eval_start_start_2] 3.48/2.16 3.48/2.16 3.48/2.16 ---------------------------------------- 3.48/2.16 3.48/2.16 (1) Koat Proof (FINISHED) 3.48/2.16 YES(?, 4*ar_1 + 15) 3.48/2.16 3.48/2.16 3.48/2.16 3.48/2.16 Initial complexity problem: 3.48/2.16 3.48/2.16 1: T: 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartstart(ar_0, ar_1) -> Com_1(evalstartbb0in(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb0in(ar_0, ar_1) -> Com_1(evalstart0(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart0(ar_0, ar_1) -> Com_1(evalstart1(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart1(ar_0, ar_1) -> Com_1(evalstart2(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart2(ar_0, ar_1) -> Com_1(evalstart3(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart3(ar_0, ar_1) -> Com_1(evalstart4(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart4(ar_0, ar_1) -> Com_1(evalstartbb1in(0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1) -> Com_1(evalstart5(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1) -> Com_1(evalstart6(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1) -> Com_1(evalstartstop(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalstartstart(ar_0, ar_1)) [ 0 <= 0 ] 3.48/2.16 3.48/2.16 start location: koat_start 3.48/2.16 3.48/2.16 leaf cost: 0 3.48/2.16 3.48/2.16 3.48/2.16 3.48/2.16 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.48/2.16 3.48/2.16 2: T: 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1) -> Com_1(evalstartbb0in(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1) -> Com_1(evalstart0(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1) -> Com_1(evalstart1(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1) -> Com_1(evalstart2(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1) -> Com_1(evalstart3(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1) -> Com_1(evalstart4(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1) -> Com_1(evalstartbb1in(0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1) -> Com_1(evalstart5(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1) -> Com_1(evalstart6(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1) -> Com_1(evalstartstop(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalstartstart(ar_0, ar_1)) [ 0 <= 0 ] 3.48/2.16 3.48/2.16 start location: koat_start 3.48/2.16 3.48/2.16 leaf cost: 0 3.48/2.16 3.48/2.16 3.48/2.16 3.48/2.16 A polynomial rank function with 3.48/2.16 3.48/2.16 Pol(evalstartstart) = 2 3.48/2.16 3.48/2.16 Pol(evalstartbb0in) = 2 3.48/2.16 3.48/2.16 Pol(evalstart0) = 2 3.48/2.16 3.48/2.16 Pol(evalstart1) = 2 3.48/2.16 3.48/2.16 Pol(evalstart2) = 2 3.48/2.16 3.48/2.16 Pol(evalstart3) = 2 3.48/2.16 3.48/2.16 Pol(evalstart4) = 2 3.48/2.16 3.48/2.16 Pol(evalstartbb1in) = 2 3.48/2.16 3.48/2.16 Pol(evalstartbb2in) = 2 3.48/2.16 3.48/2.16 Pol(evalstartbb3in) = 1 3.48/2.16 3.48/2.16 Pol(evalstart5) = 2 3.48/2.16 3.48/2.16 Pol(evalstart6) = 2 3.48/2.16 3.48/2.16 Pol(evalstartstop) = 0 3.48/2.16 3.48/2.16 Pol(koat_start) = 2 3.48/2.16 3.48/2.16 orients all transitions weakly and the transitions 3.48/2.16 3.48/2.16 evalstartbb3in(ar_0, ar_1) -> Com_1(evalstartstop(ar_0, ar_1)) 3.48/2.16 3.48/2.16 evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.48/2.16 3.48/2.16 strictly and produces the following problem: 3.48/2.16 3.48/2.16 3: T: 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1) -> Com_1(evalstartbb0in(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1) -> Com_1(evalstart0(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1) -> Com_1(evalstart1(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1) -> Com_1(evalstart2(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1) -> Com_1(evalstart3(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1) -> Com_1(evalstart4(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1) -> Com_1(evalstartbb1in(0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.48/2.16 3.48/2.16 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1) -> Com_1(evalstart5(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1) -> Com_1(evalstart6(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1) -> Com_1(evalstartstop(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalstartstart(ar_0, ar_1)) [ 0 <= 0 ] 3.48/2.16 3.48/2.16 start location: koat_start 3.48/2.16 3.48/2.16 leaf cost: 0 3.48/2.16 3.48/2.16 3.48/2.16 3.48/2.16 A polynomial rank function with 3.48/2.16 3.48/2.16 Pol(evalstartstart) = V_2 + 1 3.48/2.16 3.48/2.16 Pol(evalstartbb0in) = V_2 + 1 3.48/2.16 3.48/2.16 Pol(evalstart0) = V_2 + 1 3.48/2.16 3.48/2.16 Pol(evalstart1) = V_2 + 1 3.48/2.16 3.48/2.16 Pol(evalstart2) = V_2 + 1 3.48/2.16 3.48/2.16 Pol(evalstart3) = V_2 + 1 3.48/2.16 3.48/2.16 Pol(evalstart4) = V_2 + 1 3.48/2.16 3.48/2.16 Pol(evalstartbb1in) = -V_1 + V_2 + 1 3.48/2.16 3.48/2.16 Pol(evalstartbb2in) = -V_1 + V_2 3.48/2.16 3.48/2.16 Pol(evalstartbb3in) = -V_1 + V_2 3.48/2.16 3.48/2.16 Pol(evalstart5) = -V_1 + V_2 3.48/2.16 3.48/2.16 Pol(evalstart6) = -V_1 + V_2 3.48/2.16 3.48/2.16 Pol(evalstartstop) = -V_1 + V_2 3.48/2.16 3.48/2.16 Pol(koat_start) = V_2 + 1 3.48/2.16 3.48/2.16 orients all transitions weakly and the transition 3.48/2.16 3.48/2.16 evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.48/2.16 3.48/2.16 strictly and produces the following problem: 3.48/2.16 3.48/2.16 4: T: 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1) -> Com_1(evalstartbb0in(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1) -> Com_1(evalstart0(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1) -> Com_1(evalstart1(ar_0, ar_1)) 3.48/2.16 3.48/2.16 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1) -> Com_1(evalstart2(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1) -> Com_1(evalstart3(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1) -> Com_1(evalstart4(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1) -> Com_1(evalstartbb1in(0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: ar_1 + 1, Cost: 1) evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.48/2.17 3.48/2.17 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.48/2.17 3.48/2.17 (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1) -> Com_1(evalstart5(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1) -> Com_1(evalstart6(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1) -> Com_1(evalstartstop(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalstartstart(ar_0, ar_1)) [ 0 <= 0 ] 3.48/2.17 3.48/2.17 start location: koat_start 3.48/2.17 3.48/2.17 leaf cost: 0 3.48/2.17 3.48/2.17 3.48/2.17 3.48/2.17 Repeatedly propagating knowledge in problem 4 produces the following problem: 3.48/2.17 3.48/2.17 5: T: 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1) -> Com_1(evalstartbb0in(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1) -> Com_1(evalstart0(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1) -> Com_1(evalstart1(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1) -> Com_1(evalstart2(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1) -> Com_1(evalstart3(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1) -> Com_1(evalstart4(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1) -> Com_1(evalstartbb1in(0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: ar_1 + 1, Cost: 1) evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] 3.48/2.17 3.48/2.17 (Comp: 2, Cost: 1) evalstartbb1in(ar_0, ar_1) -> Com_1(evalstartbb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] 3.48/2.17 3.48/2.17 (Comp: ar_1 + 1, Cost: 1) evalstartbb2in(ar_0, ar_1) -> Com_1(evalstart5(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: ar_1 + 1, Cost: 1) evalstart5(ar_0, ar_1) -> Com_1(evalstart6(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: ar_1 + 1, Cost: 1) evalstart6(ar_0, ar_1) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1) -> Com_1(evalstartstop(ar_0, ar_1)) 3.48/2.17 3.48/2.17 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalstartstart(ar_0, ar_1)) [ 0 <= 0 ] 3.48/2.17 3.48/2.17 start location: koat_start 3.48/2.17 3.48/2.17 leaf cost: 0 3.48/2.17 3.48/2.17 3.48/2.17 3.48/2.17 Complexity upper bound 4*ar_1 + 15 3.48/2.17 3.48/2.17 3.48/2.17 3.48/2.17 Time: 0.066 sec (SMT: 0.059 sec) 3.48/2.17 3.48/2.17 3.48/2.17 ---------------------------------------- 3.48/2.17 3.48/2.17 (2) 3.48/2.17 BOUNDS(1, n^1) 3.48/2.17 3.48/2.17 ---------------------------------------- 3.48/2.17 3.48/2.17 (3) Loat Proof (FINISHED) 3.48/2.17 3.48/2.17 3.48/2.17 ### Pre-processing the ITS problem ### 3.48/2.17 3.48/2.17 3.48/2.17 3.48/2.17 Initial linear ITS problem 3.48/2.17 3.48/2.17 Start location: evalstartstart 3.48/2.17 3.48/2.17 0: evalstartstart -> evalstartbb0in : [], cost: 1 3.48/2.17 3.48/2.17 1: evalstartbb0in -> evalstart0 : [], cost: 1 3.48/2.17 3.48/2.17 2: evalstart0 -> evalstart1 : [], cost: 1 3.48/2.17 3.48/2.17 3: evalstart1 -> evalstart2 : [], cost: 1 3.48/2.17 3.48/2.17 4: evalstart2 -> evalstart3 : [], cost: 1 4.44/2.17 4.44/2.17 5: evalstart3 -> evalstart4 : [], cost: 1 4.44/2.17 4.44/2.17 6: evalstart4 -> evalstartbb1in : A'=0, [], cost: 1 4.44/2.17 4.44/2.17 7: evalstartbb1in -> evalstartbb2in : [ B>=1+A ], cost: 1 4.44/2.17 4.44/2.17 8: evalstartbb1in -> evalstartbb3in : [ A>=B ], cost: 1 4.44/2.17 4.44/2.17 9: evalstartbb2in -> evalstart5 : [], cost: 1 4.44/2.17 4.44/2.17 10: evalstart5 -> evalstart6 : [], cost: 1 4.44/2.17 4.44/2.17 11: evalstart6 -> evalstartbb1in : A'=1+A, [], cost: 1 4.44/2.17 4.44/2.17 12: evalstartbb3in -> evalstartstop : [], cost: 1 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Removed unreachable and leaf rules: 4.44/2.17 4.44/2.17 Start location: evalstartstart 4.44/2.17 4.44/2.17 0: evalstartstart -> evalstartbb0in : [], cost: 1 4.44/2.17 4.44/2.17 1: evalstartbb0in -> evalstart0 : [], cost: 1 4.44/2.17 4.44/2.17 2: evalstart0 -> evalstart1 : [], cost: 1 4.44/2.17 4.44/2.17 3: evalstart1 -> evalstart2 : [], cost: 1 4.44/2.17 4.44/2.17 4: evalstart2 -> evalstart3 : [], cost: 1 4.44/2.17 4.44/2.17 5: evalstart3 -> evalstart4 : [], cost: 1 4.44/2.17 4.44/2.17 6: evalstart4 -> evalstartbb1in : A'=0, [], cost: 1 4.44/2.17 4.44/2.17 7: evalstartbb1in -> evalstartbb2in : [ B>=1+A ], cost: 1 4.44/2.17 4.44/2.17 9: evalstartbb2in -> evalstart5 : [], cost: 1 4.44/2.17 4.44/2.17 10: evalstart5 -> evalstart6 : [], cost: 1 4.44/2.17 4.44/2.17 11: evalstart6 -> evalstartbb1in : A'=1+A, [], cost: 1 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 ### Simplification by acceleration and chaining ### 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Eliminated locations (on linear paths): 4.44/2.17 4.44/2.17 Start location: evalstartstart 4.44/2.17 4.44/2.17 18: evalstartstart -> evalstartbb1in : A'=0, [], cost: 7 4.44/2.17 4.44/2.17 21: evalstartbb1in -> evalstartbb1in : A'=1+A, [ B>=1+A ], cost: 4 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Accelerating simple loops of location 7. 4.44/2.17 4.44/2.17 Accelerating the following rules: 4.44/2.17 4.44/2.17 21: evalstartbb1in -> evalstartbb1in : A'=1+A, [ B>=1+A ], cost: 4 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Accelerated rule 21 with metering function -A+B, yielding the new rule 22. 4.44/2.17 4.44/2.17 Removing the simple loops: 21. 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Accelerated all simple loops using metering functions (where possible): 4.44/2.17 4.44/2.17 Start location: evalstartstart 4.44/2.17 4.44/2.17 18: evalstartstart -> evalstartbb1in : A'=0, [], cost: 7 4.44/2.17 4.44/2.17 22: evalstartbb1in -> evalstartbb1in : A'=B, [ B>=1+A ], cost: -4*A+4*B 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Chained accelerated rules (with incoming rules): 4.44/2.17 4.44/2.17 Start location: evalstartstart 4.44/2.17 4.44/2.17 18: evalstartstart -> evalstartbb1in : A'=0, [], cost: 7 4.44/2.17 4.44/2.17 23: evalstartstart -> evalstartbb1in : A'=B, [ B>=1 ], cost: 7+4*B 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Removed unreachable locations (and leaf rules with constant cost): 4.44/2.17 4.44/2.17 Start location: evalstartstart 4.44/2.17 4.44/2.17 23: evalstartstart -> evalstartbb1in : A'=B, [ B>=1 ], cost: 7+4*B 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 ### Computing asymptotic complexity ### 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Fully simplified ITS problem 4.44/2.17 4.44/2.17 Start location: evalstartstart 4.44/2.17 4.44/2.17 23: evalstartstart -> evalstartbb1in : A'=B, [ B>=1 ], cost: 7+4*B 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Computing asymptotic complexity for rule 23 4.44/2.17 4.44/2.17 Solved the limit problem by the following transformations: 4.44/2.17 4.44/2.17 Created initial limit problem: 4.44/2.17 4.44/2.17 7+4*B (+), B (+/+!) [not solved] 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 removing all constraints (solved by SMT) 4.44/2.17 4.44/2.17 resulting limit problem: [solved] 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 applying transformation rule (C) using substitution {B==n} 4.44/2.17 4.44/2.17 resulting limit problem: 4.44/2.17 4.44/2.17 [solved] 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Solution: 4.44/2.17 4.44/2.17 B / n 4.44/2.17 4.44/2.17 Resulting cost 7+4*n has complexity: Poly(n^1) 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Found new complexity Poly(n^1). 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 Obtained the following overall complexity (w.r.t. the length of the input n): 4.44/2.17 4.44/2.17 Complexity: Poly(n^1) 4.44/2.17 4.44/2.17 Cpx degree: 1 4.44/2.17 4.44/2.17 Solved cost: 7+4*n 4.44/2.17 4.44/2.17 Rule cost: 7+4*B 4.44/2.17 4.44/2.17 Rule guard: [ B>=1 ] 4.44/2.17 4.44/2.17 4.44/2.17 4.44/2.17 WORST_CASE(Omega(n^1),?) 4.44/2.17 4.44/2.17 4.44/2.17 ---------------------------------------- 4.44/2.17 4.44/2.17 (4) 4.44/2.17 BOUNDS(n^1, INF) 4.44/2.19 EOF