4.27/2.03 WORST_CASE(Omega(n^1), O(n^1)) 4.27/2.04 proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat 4.27/2.04 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.27/2.04 4.27/2.04 4.27/2.04 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.27/2.04 4.27/2.04 (0) CpxIntTrs 4.27/2.04 (1) Koat Proof [FINISHED, 22 ms] 4.27/2.04 (2) BOUNDS(1, n^1) 4.27/2.04 (3) Loat Proof [FINISHED, 324 ms] 4.27/2.04 (4) BOUNDS(n^1, INF) 4.27/2.04 4.27/2.04 4.27/2.04 ---------------------------------------- 4.27/2.04 4.27/2.04 (0) 4.27/2.04 Obligation: 4.27/2.04 Complexity Int TRS consisting of the following rules: 4.27/2.04 eval_ndecr_start(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_bb0_in(v_0, v_i_0, v_n)) :|: TRUE 4.27/2.04 eval_ndecr_bb0_in(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_0(v_0, v_i_0, v_n)) :|: TRUE 4.27/2.04 eval_ndecr_0(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_1(v_0, v_i_0, v_n)) :|: TRUE 4.27/2.04 eval_ndecr_1(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_2(v_n - 1, v_i_0, v_n)) :|: TRUE 4.27/2.04 eval_ndecr_2(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_3(v_0, v_i_0, v_n)) :|: TRUE 4.27/2.04 eval_ndecr_3(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_4(v_0, v_i_0, v_n)) :|: TRUE 4.27/2.04 eval_ndecr_4(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_bb1_in(v_0, v_0, v_n)) :|: TRUE 4.27/2.04 eval_ndecr_bb1_in(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_bb2_in(v_0, v_i_0, v_n)) :|: v_i_0 > 1 4.27/2.04 eval_ndecr_bb1_in(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_bb3_in(v_0, v_i_0, v_n)) :|: v_i_0 <= 1 4.27/2.04 eval_ndecr_bb2_in(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_bb1_in(v_0, v_i_0 - 1, v_n)) :|: TRUE 4.27/2.04 eval_ndecr_bb3_in(v_0, v_i_0, v_n) -> Com_1(eval_ndecr_stop(v_0, v_i_0, v_n)) :|: TRUE 4.27/2.04 4.27/2.04 The start-symbols are:[eval_ndecr_start_3] 4.27/2.04 4.27/2.04 4.27/2.04 ---------------------------------------- 4.27/2.04 4.27/2.04 (1) Koat Proof (FINISHED) 4.27/2.04 YES(?, 2*ar_1 + 11) 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Initial complexity problem: 4.27/2.04 4.27/2.04 1: T: 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrstart(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb0in(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb0in(ar_0, ar_1, ar_2) -> Com_1(evalndecr0(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecr0(ar_0, ar_1, ar_2) -> Com_1(evalndecr1(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecr1(ar_0, ar_1, ar_2) -> Com_1(evalndecr2(ar_1 - 1, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecr2(ar_0, ar_1, ar_2) -> Com_1(evalndecr3(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecr3(ar_0, ar_1, ar_2) -> Com_1(evalndecr4(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecr4(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb1in(ar_0, ar_1, ar_0)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb3in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb2in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb1in(ar_0, ar_1, ar_2 - 1)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb3in(ar_0, ar_1, ar_2) -> Com_1(evalndecrstop(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalndecrstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.27/2.04 4.27/2.04 start location: koat_start 4.27/2.04 4.27/2.04 leaf cost: 0 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.27/2.04 4.27/2.04 2: T: 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecrstart(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb0in(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecrbb0in(ar_0, ar_1, ar_2) -> Com_1(evalndecr0(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr0(ar_0, ar_1, ar_2) -> Com_1(evalndecr1(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr1(ar_0, ar_1, ar_2) -> Com_1(evalndecr2(ar_1 - 1, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr2(ar_0, ar_1, ar_2) -> Com_1(evalndecr3(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr3(ar_0, ar_1, ar_2) -> Com_1(evalndecr4(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr4(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb1in(ar_0, ar_1, ar_0)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb3in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb2in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb1in(ar_0, ar_1, ar_2 - 1)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb3in(ar_0, ar_1, ar_2) -> Com_1(evalndecrstop(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalndecrstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.27/2.04 4.27/2.04 start location: koat_start 4.27/2.04 4.27/2.04 leaf cost: 0 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 A polynomial rank function with 4.27/2.04 4.27/2.04 Pol(evalndecrstart) = 2 4.27/2.04 4.27/2.04 Pol(evalndecrbb0in) = 2 4.27/2.04 4.27/2.04 Pol(evalndecr0) = 2 4.27/2.04 4.27/2.04 Pol(evalndecr1) = 2 4.27/2.04 4.27/2.04 Pol(evalndecr2) = 2 4.27/2.04 4.27/2.04 Pol(evalndecr3) = 2 4.27/2.04 4.27/2.04 Pol(evalndecr4) = 2 4.27/2.04 4.27/2.04 Pol(evalndecrbb1in) = 2 4.27/2.04 4.27/2.04 Pol(evalndecrbb2in) = 2 4.27/2.04 4.27/2.04 Pol(evalndecrbb3in) = 1 4.27/2.04 4.27/2.04 Pol(evalndecrstop) = 0 4.27/2.04 4.27/2.04 Pol(koat_start) = 2 4.27/2.04 4.27/2.04 orients all transitions weakly and the transitions 4.27/2.04 4.27/2.04 evalndecrbb3in(ar_0, ar_1, ar_2) -> Com_1(evalndecrstop(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb3in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 4.27/2.04 4.27/2.04 strictly and produces the following problem: 4.27/2.04 4.27/2.04 3: T: 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecrstart(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb0in(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecrbb0in(ar_0, ar_1, ar_2) -> Com_1(evalndecr0(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr0(ar_0, ar_1, ar_2) -> Com_1(evalndecr1(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr1(ar_0, ar_1, ar_2) -> Com_1(evalndecr2(ar_1 - 1, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr2(ar_0, ar_1, ar_2) -> Com_1(evalndecr3(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr3(ar_0, ar_1, ar_2) -> Com_1(evalndecr4(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr4(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb1in(ar_0, ar_1, ar_0)) 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 4.27/2.04 4.27/2.04 (Comp: 2, Cost: 1) evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb3in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb2in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb1in(ar_0, ar_1, ar_2 - 1)) 4.27/2.04 4.27/2.04 (Comp: 2, Cost: 1) evalndecrbb3in(ar_0, ar_1, ar_2) -> Com_1(evalndecrstop(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalndecrstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.27/2.04 4.27/2.04 start location: koat_start 4.27/2.04 4.27/2.04 leaf cost: 0 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 A polynomial rank function with 4.27/2.04 4.27/2.04 Pol(evalndecrstart) = V_2 4.27/2.04 4.27/2.04 Pol(evalndecrbb0in) = V_2 4.27/2.04 4.27/2.04 Pol(evalndecr0) = V_2 4.27/2.04 4.27/2.04 Pol(evalndecr1) = V_2 4.27/2.04 4.27/2.04 Pol(evalndecr2) = V_1 4.27/2.04 4.27/2.04 Pol(evalndecr3) = V_1 4.27/2.04 4.27/2.04 Pol(evalndecr4) = V_1 4.27/2.04 4.27/2.04 Pol(evalndecrbb1in) = V_3 4.27/2.04 4.27/2.04 Pol(evalndecrbb2in) = V_3 - 1 4.27/2.04 4.27/2.04 Pol(evalndecrbb3in) = V_3 4.27/2.04 4.27/2.04 Pol(evalndecrstop) = V_3 4.27/2.04 4.27/2.04 Pol(koat_start) = V_2 4.27/2.04 4.27/2.04 orients all transitions weakly and the transition 4.27/2.04 4.27/2.04 evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 4.27/2.04 4.27/2.04 strictly and produces the following problem: 4.27/2.04 4.27/2.04 4: T: 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecrstart(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb0in(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecrbb0in(ar_0, ar_1, ar_2) -> Com_1(evalndecr0(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr0(ar_0, ar_1, ar_2) -> Com_1(evalndecr1(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr1(ar_0, ar_1, ar_2) -> Com_1(evalndecr2(ar_1 - 1, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr2(ar_0, ar_1, ar_2) -> Com_1(evalndecr3(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr3(ar_0, ar_1, ar_2) -> Com_1(evalndecr4(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr4(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb1in(ar_0, ar_1, ar_0)) 4.27/2.04 4.27/2.04 (Comp: ar_1, Cost: 1) evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 4.27/2.04 4.27/2.04 (Comp: 2, Cost: 1) evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb3in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 4.27/2.04 4.27/2.04 (Comp: ?, Cost: 1) evalndecrbb2in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb1in(ar_0, ar_1, ar_2 - 1)) 4.27/2.04 4.27/2.04 (Comp: 2, Cost: 1) evalndecrbb3in(ar_0, ar_1, ar_2) -> Com_1(evalndecrstop(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalndecrstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.27/2.04 4.27/2.04 start location: koat_start 4.27/2.04 4.27/2.04 leaf cost: 0 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Repeatedly propagating knowledge in problem 4 produces the following problem: 4.27/2.04 4.27/2.04 5: T: 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecrstart(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb0in(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecrbb0in(ar_0, ar_1, ar_2) -> Com_1(evalndecr0(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr0(ar_0, ar_1, ar_2) -> Com_1(evalndecr1(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr1(ar_0, ar_1, ar_2) -> Com_1(evalndecr2(ar_1 - 1, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr2(ar_0, ar_1, ar_2) -> Com_1(evalndecr3(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr3(ar_0, ar_1, ar_2) -> Com_1(evalndecr4(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 1) evalndecr4(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb1in(ar_0, ar_1, ar_0)) 4.27/2.04 4.27/2.04 (Comp: ar_1, Cost: 1) evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= 2 ] 4.27/2.04 4.27/2.04 (Comp: 2, Cost: 1) evalndecrbb1in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb3in(ar_0, ar_1, ar_2)) [ 1 >= ar_2 ] 4.27/2.04 4.27/2.04 (Comp: ar_1, Cost: 1) evalndecrbb2in(ar_0, ar_1, ar_2) -> Com_1(evalndecrbb1in(ar_0, ar_1, ar_2 - 1)) 4.27/2.04 4.27/2.04 (Comp: 2, Cost: 1) evalndecrbb3in(ar_0, ar_1, ar_2) -> Com_1(evalndecrstop(ar_0, ar_1, ar_2)) 4.27/2.04 4.27/2.04 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalndecrstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.27/2.04 4.27/2.04 start location: koat_start 4.27/2.04 4.27/2.04 leaf cost: 0 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Complexity upper bound 2*ar_1 + 11 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Time: 0.079 sec (SMT: 0.069 sec) 4.27/2.04 4.27/2.04 4.27/2.04 ---------------------------------------- 4.27/2.04 4.27/2.04 (2) 4.27/2.04 BOUNDS(1, n^1) 4.27/2.04 4.27/2.04 ---------------------------------------- 4.27/2.04 4.27/2.04 (3) Loat Proof (FINISHED) 4.27/2.04 4.27/2.04 4.27/2.04 ### Pre-processing the ITS problem ### 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Initial linear ITS problem 4.27/2.04 4.27/2.04 Start location: evalndecrstart 4.27/2.04 4.27/2.04 0: evalndecrstart -> evalndecrbb0in : [], cost: 1 4.27/2.04 4.27/2.04 1: evalndecrbb0in -> evalndecr0 : [], cost: 1 4.27/2.04 4.27/2.04 2: evalndecr0 -> evalndecr1 : [], cost: 1 4.27/2.04 4.27/2.04 3: evalndecr1 -> evalndecr2 : A'=-1+B, [], cost: 1 4.27/2.04 4.27/2.04 4: evalndecr2 -> evalndecr3 : [], cost: 1 4.27/2.04 4.27/2.04 5: evalndecr3 -> evalndecr4 : [], cost: 1 4.27/2.04 4.27/2.04 6: evalndecr4 -> evalndecrbb1in : C'=A, [], cost: 1 4.27/2.04 4.27/2.04 7: evalndecrbb1in -> evalndecrbb2in : [ C>=2 ], cost: 1 4.27/2.04 4.27/2.04 8: evalndecrbb1in -> evalndecrbb3in : [ 1>=C ], cost: 1 4.27/2.04 4.27/2.04 9: evalndecrbb2in -> evalndecrbb1in : C'=-1+C, [], cost: 1 4.27/2.04 4.27/2.04 10: evalndecrbb3in -> evalndecrstop : [], cost: 1 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Removed unreachable and leaf rules: 4.27/2.04 4.27/2.04 Start location: evalndecrstart 4.27/2.04 4.27/2.04 0: evalndecrstart -> evalndecrbb0in : [], cost: 1 4.27/2.04 4.27/2.04 1: evalndecrbb0in -> evalndecr0 : [], cost: 1 4.27/2.04 4.27/2.04 2: evalndecr0 -> evalndecr1 : [], cost: 1 4.27/2.04 4.27/2.04 3: evalndecr1 -> evalndecr2 : A'=-1+B, [], cost: 1 4.27/2.04 4.27/2.04 4: evalndecr2 -> evalndecr3 : [], cost: 1 4.27/2.04 4.27/2.04 5: evalndecr3 -> evalndecr4 : [], cost: 1 4.27/2.04 4.27/2.04 6: evalndecr4 -> evalndecrbb1in : C'=A, [], cost: 1 4.27/2.04 4.27/2.04 7: evalndecrbb1in -> evalndecrbb2in : [ C>=2 ], cost: 1 4.27/2.04 4.27/2.04 9: evalndecrbb2in -> evalndecrbb1in : C'=-1+C, [], cost: 1 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 ### Simplification by acceleration and chaining ### 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Eliminated locations (on linear paths): 4.27/2.04 4.27/2.04 Start location: evalndecrstart 4.27/2.04 4.27/2.04 16: evalndecrstart -> evalndecrbb1in : A'=-1+B, C'=-1+B, [], cost: 7 4.27/2.04 4.27/2.04 17: evalndecrbb1in -> evalndecrbb1in : C'=-1+C, [ C>=2 ], cost: 2 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Accelerating simple loops of location 7. 4.27/2.04 4.27/2.04 Accelerating the following rules: 4.27/2.04 4.27/2.04 17: evalndecrbb1in -> evalndecrbb1in : C'=-1+C, [ C>=2 ], cost: 2 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Accelerated rule 17 with metering function -1+C, yielding the new rule 18. 4.27/2.04 4.27/2.04 Removing the simple loops: 17. 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Accelerated all simple loops using metering functions (where possible): 4.27/2.04 4.27/2.04 Start location: evalndecrstart 4.27/2.04 4.27/2.04 16: evalndecrstart -> evalndecrbb1in : A'=-1+B, C'=-1+B, [], cost: 7 4.27/2.04 4.27/2.04 18: evalndecrbb1in -> evalndecrbb1in : C'=1, [ C>=2 ], cost: -2+2*C 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Chained accelerated rules (with incoming rules): 4.27/2.04 4.27/2.04 Start location: evalndecrstart 4.27/2.04 4.27/2.04 16: evalndecrstart -> evalndecrbb1in : A'=-1+B, C'=-1+B, [], cost: 7 4.27/2.04 4.27/2.04 19: evalndecrstart -> evalndecrbb1in : A'=-1+B, C'=1, [ -1+B>=2 ], cost: 3+2*B 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Removed unreachable locations (and leaf rules with constant cost): 4.27/2.04 4.27/2.04 Start location: evalndecrstart 4.27/2.04 4.27/2.04 19: evalndecrstart -> evalndecrbb1in : A'=-1+B, C'=1, [ -1+B>=2 ], cost: 3+2*B 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 ### Computing asymptotic complexity ### 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Fully simplified ITS problem 4.27/2.04 4.27/2.04 Start location: evalndecrstart 4.27/2.04 4.27/2.04 19: evalndecrstart -> evalndecrbb1in : A'=-1+B, C'=1, [ -1+B>=2 ], cost: 3+2*B 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Computing asymptotic complexity for rule 19 4.27/2.04 4.27/2.04 Solved the limit problem by the following transformations: 4.27/2.04 4.27/2.04 Created initial limit problem: 4.27/2.04 4.27/2.04 -2+B (+/+!), 3+2*B (+) [not solved] 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 removing all constraints (solved by SMT) 4.27/2.04 4.27/2.04 resulting limit problem: [solved] 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 applying transformation rule (C) using substitution {B==n} 4.27/2.04 4.27/2.04 resulting limit problem: 4.27/2.04 4.27/2.04 [solved] 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Solution: 4.27/2.04 4.27/2.04 B / n 4.27/2.04 4.27/2.04 Resulting cost 3+2*n has complexity: Poly(n^1) 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Found new complexity Poly(n^1). 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 Obtained the following overall complexity (w.r.t. the length of the input n): 4.27/2.04 4.27/2.04 Complexity: Poly(n^1) 4.27/2.04 4.27/2.04 Cpx degree: 1 4.27/2.04 4.27/2.04 Solved cost: 3+2*n 4.27/2.04 4.27/2.04 Rule cost: 3+2*B 4.27/2.04 4.27/2.04 Rule guard: [ -1+B>=2 ] 4.27/2.04 4.27/2.04 4.27/2.04 4.27/2.04 WORST_CASE(Omega(n^1),?) 4.27/2.04 4.27/2.04 4.27/2.04 ---------------------------------------- 4.27/2.04 4.27/2.04 (4) 4.27/2.04 BOUNDS(n^1, INF) 4.27/2.06 EOF