3.58/1.87 WORST_CASE(?, O(1)) 3.92/1.88 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.92/1.88 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.92/1.88 3.92/1.88 3.92/1.88 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.92/1.88 3.92/1.88 (0) CpxIntTrs 3.92/1.88 (1) Koat Proof [FINISHED, 99 ms] 3.92/1.88 (2) BOUNDS(1, 1) 3.92/1.88 3.92/1.88 3.92/1.88 ---------------------------------------- 3.92/1.88 3.92/1.88 (0) 3.92/1.88 Obligation: 3.92/1.88 Complexity Int TRS consisting of the following rules: 3.92/1.88 f0(A, B, C) -> Com_1(f8(0, B, C)) :|: TRUE 3.92/1.88 f8(A, B, C) -> Com_1(f14(A, A, C)) :|: 0 >= A && 0 >= D 3.92/1.88 f8(A, B, C) -> Com_1(f14(A, A, C)) :|: 0 >= A 3.92/1.88 f23(A, B, C) -> Com_1(f28(A, B, D)) :|: 0 >= A && 0 >= E + 1 3.92/1.88 f23(A, B, C) -> Com_1(f28(A, B, D)) :|: 0 >= A 3.92/1.88 f23(A, B, C) -> Com_1(f23(A + 1, B, C)) :|: 0 >= A 3.92/1.88 f28(A, B, C) -> Com_1(f23(A + 1, B, C)) :|: TRUE 3.92/1.88 f28(A, B, C) -> Com_1(f23(A + 1, B, C)) :|: 0 >= D + 1 3.92/1.88 f23(A, B, C) -> Com_1(f38(A, B, C)) :|: A >= 1 3.92/1.88 f8(A, B, C) -> Com_1(f8(A + 1, A, C)) :|: 0 >= A 3.92/1.88 f14(A, B, C) -> Com_1(f8(A + 1, B, C)) :|: TRUE 3.92/1.88 f14(A, B, C) -> Com_1(f8(A + 1, B, C)) :|: 0 >= D + 1 3.92/1.88 f8(A, B, C) -> Com_1(f23(0, B, C)) :|: A >= 1 3.92/1.88 3.92/1.88 The start-symbols are:[f0_3] 3.92/1.88 3.92/1.88 3.92/1.88 ---------------------------------------- 3.92/1.88 3.92/1.88 (1) Koat Proof (FINISHED) 3.92/1.88 YES(?, 19) 3.92/1.88 3.92/1.88 3.92/1.88 3.92/1.88 Initial complexity problem: 3.92/1.88 3.92/1.88 1: T: 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f8(0, ar_1, ar_2)) 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f14(ar_0, ar_0, ar_2)) [ 0 >= ar_0 /\ 0 >= d ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f14(ar_0, ar_0, ar_2)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0, ar_1, ar_2) -> Com_1(f28(ar_0, ar_1, d)) [ 0 >= ar_0 /\ 0 >= e + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0, ar_1, ar_2) -> Com_1(f28(ar_0, ar_1, d)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0, ar_1, ar_2) -> Com_1(f23(ar_0 + 1, ar_1, ar_2)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f28(ar_0, ar_1, ar_2) -> Com_1(f23(ar_0 + 1, ar_1, ar_2)) 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f28(ar_0, ar_1, ar_2) -> Com_1(f23(ar_0 + 1, ar_1, ar_2)) [ 0 >= d + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0, ar_1, ar_2) -> Com_1(f38(ar_0, ar_1, ar_2)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 1, ar_0, ar_2)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f14(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 1, ar_1, ar_2)) 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f14(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 1, ar_1, ar_2)) [ 0 >= d + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f23(0, ar_1, ar_2)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.92/1.88 3.92/1.88 start location: koat_start 3.92/1.88 3.92/1.88 leaf cost: 0 3.92/1.88 3.92/1.88 3.92/1.88 3.92/1.88 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [ar_0]. 3.92/1.88 3.92/1.88 We thus obtain the following problem: 3.92/1.88 3.92/1.88 2: T: 3.92/1.88 3.92/1.88 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 /\ 0 >= e + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 /\ 0 >= d ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 3.92/1.88 3.92/1.88 start location: koat_start 3.92/1.88 3.92/1.88 leaf cost: 0 3.92/1.88 3.92/1.88 3.92/1.88 3.92/1.88 Repeatedly propagating knowledge in problem 2 produces the following problem: 3.92/1.88 3.92/1.88 3: T: 3.92/1.88 3.92/1.88 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 /\ 0 >= e + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 /\ 0 >= d ] 3.92/1.88 3.92/1.88 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 3.92/1.88 3.92/1.88 start location: koat_start 3.92/1.88 3.92/1.88 leaf cost: 0 3.92/1.88 3.92/1.88 3.92/1.88 3.92/1.88 A polynomial rank function with 3.92/1.88 3.92/1.88 Pol(koat_start) = 2 3.92/1.88 3.92/1.88 Pol(f0) = 2 3.92/1.88 3.92/1.88 Pol(f8) = 2 3.92/1.88 3.92/1.88 Pol(f23) = 1 3.92/1.88 3.92/1.88 Pol(f14) = 2 3.92/1.88 3.92/1.88 Pol(f38) = 0 3.92/1.88 3.92/1.88 Pol(f28) = 1 3.92/1.88 3.92/1.88 orients all transitions weakly and the transitions 3.92/1.88 3.92/1.88 f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 strictly and produces the following problem: 3.92/1.88 3.92/1.88 4: T: 3.92/1.88 3.92/1.88 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 3.92/1.88 3.92/1.88 (Comp: 2, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: 2, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 /\ 0 >= e + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 /\ 0 >= d ] 3.92/1.88 3.92/1.88 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 3.92/1.88 3.92/1.88 start location: koat_start 3.92/1.88 3.92/1.88 leaf cost: 0 3.92/1.88 3.92/1.88 3.92/1.88 3.92/1.88 A polynomial rank function with 3.92/1.88 3.92/1.88 Pol(koat_start) = 1 3.92/1.88 3.92/1.88 Pol(f0) = 1 3.92/1.88 3.92/1.88 Pol(f8) = 1 3.92/1.88 3.92/1.88 Pol(f23) = -V_1 + 1 3.92/1.88 3.92/1.88 Pol(f14) = 1 3.92/1.88 3.92/1.88 Pol(f38) = -V_1 3.92/1.88 3.92/1.88 Pol(f28) = -V_1 3.92/1.88 3.92/1.88 orients all transitions weakly and the transitions 3.92/1.88 3.92/1.88 f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 /\ 0 >= e + 1 ] 3.92/1.88 3.92/1.88 f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 strictly and produces the following problem: 3.92/1.88 3.92/1.88 5: T: 3.92/1.88 3.92/1.88 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 3.92/1.88 3.92/1.88 (Comp: 2, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.88 3.92/1.88 (Comp: 2, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.88 3.92/1.88 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 3.92/1.88 3.92/1.88 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 /\ 0 >= e + 1 ] 3.92/1.89 3.92/1.89 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 /\ 0 >= d ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 3.92/1.89 3.92/1.89 start location: koat_start 3.92/1.89 3.92/1.89 leaf cost: 0 3.92/1.89 3.92/1.89 3.92/1.89 3.92/1.89 Repeatedly propagating knowledge in problem 5 produces the following problem: 3.92/1.89 3.92/1.89 6: T: 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 1 ] 3.92/1.89 3.92/1.89 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.89 3.92/1.89 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 3.92/1.89 3.92/1.89 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 1 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 /\ 0 >= e + 1 ] 3.92/1.89 3.92/1.89 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 /\ 0 >= d ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 3.92/1.89 3.92/1.89 start location: koat_start 3.92/1.89 3.92/1.89 leaf cost: 0 3.92/1.89 3.92/1.89 3.92/1.89 3.92/1.89 A polynomial rank function with 3.92/1.89 3.92/1.89 Pol(f8) = -V_1 + 1 3.92/1.89 3.92/1.89 Pol(f14) = -V_1 3.92/1.89 3.92/1.89 and size complexities 3.92/1.89 3.92/1.89 S("f0(ar_0) -> Com_1(f8(0))", 0-0) = 0 3.92/1.89 3.92/1.89 S("f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 /\\ 0 >= d ]", 0-0) = ? 3.92/1.89 3.92/1.89 S("f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 ]", 0-0) = ? 3.92/1.89 3.92/1.89 S("f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 /\\ 0 >= e + 1 ]", 0-0) = 5 3.92/1.89 3.92/1.89 S("f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 ]", 0-0) = 5 3.92/1.89 3.92/1.89 S("f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= ar_0 ]", 0-0) = 5 3.92/1.89 3.92/1.89 S("f28(ar_0) -> Com_1(f23(ar_0 + 1))", 0-0) = 5 3.92/1.89 3.92/1.89 S("f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= d + 1 ]", 0-0) = 5 3.92/1.89 3.92/1.89 S("f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 1 ]", 0-0) = 5 3.92/1.89 3.92/1.89 S("f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= ar_0 ]", 0-0) = ? 3.92/1.89 3.92/1.89 S("f14(ar_0) -> Com_1(f8(ar_0 + 1))", 0-0) = ? 3.92/1.89 3.92/1.89 S("f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= d + 1 ]", 0-0) = ? 3.92/1.89 3.92/1.89 S("f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 1 ]", 0-0) = 0 3.92/1.89 3.92/1.89 S("koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ]", 0-0) = ar_0 3.92/1.89 3.92/1.89 orients the transitions 3.92/1.89 3.92/1.89 f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 /\ 0 >= d ] 3.92/1.89 3.92/1.89 f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.89 3.92/1.89 f14(ar_0) -> Com_1(f8(ar_0 + 1)) 3.92/1.89 3.92/1.89 weakly and the transitions 3.92/1.89 3.92/1.89 f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 /\ 0 >= d ] 3.92/1.89 3.92/1.89 f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 strictly and produces the following problem: 3.92/1.89 3.92/1.89 7: T: 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 1 ] 3.92/1.89 3.92/1.89 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.89 3.92/1.89 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 1 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 /\ 0 >= e + 1 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 /\ 0 >= d ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 3.92/1.89 3.92/1.89 start location: koat_start 3.92/1.89 3.92/1.89 leaf cost: 0 3.92/1.89 3.92/1.89 3.92/1.89 3.92/1.89 Repeatedly propagating knowledge in problem 7 produces the following problem: 3.92/1.89 3.92/1.89 8: T: 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 1 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 1 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= d + 1 ] 3.92/1.89 3.92/1.89 (Comp: 2, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 0 >= ar_0 /\ 0 >= e + 1 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 0 >= ar_0 /\ 0 >= d ] 3.92/1.89 3.92/1.89 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 3.92/1.89 3.92/1.89 start location: koat_start 3.92/1.89 3.92/1.89 leaf cost: 0 3.92/1.89 3.92/1.89 3.92/1.89 3.92/1.89 Complexity upper bound 19 3.92/1.89 3.92/1.89 3.92/1.89 3.92/1.89 Time: 0.162 sec (SMT: 0.153 sec) 3.92/1.89 3.92/1.89 3.92/1.89 ---------------------------------------- 3.92/1.89 3.92/1.89 (2) 3.92/1.89 BOUNDS(1, 1) 3.94/1.91 EOF