3.47/1.83 WORST_CASE(?, O(1)) 4.01/1.84 proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat 4.01/1.84 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.01/1.84 4.01/1.84 4.01/1.84 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 4.01/1.84 4.01/1.84 (0) CpxIntTrs 4.01/1.84 (1) Koat Proof [FINISHED, 112 ms] 4.01/1.84 (2) BOUNDS(1, 1) 4.01/1.84 4.01/1.84 4.01/1.84 ---------------------------------------- 4.01/1.84 4.01/1.84 (0) 4.01/1.84 Obligation: 4.01/1.84 Complexity Int TRS consisting of the following rules: 4.01/1.84 f0(A, B, C) -> Com_1(f8(0, B, C)) :|: TRUE 4.01/1.84 f8(A, B, C) -> Com_1(f14(A, A, C)) :|: 9 >= A && 9 >= D 4.01/1.84 f8(A, B, C) -> Com_1(f14(A, A, C)) :|: 9 >= A 4.01/1.84 f23(A, B, C) -> Com_1(f28(A, B, D)) :|: 9 >= A && 0 >= E + 1 4.01/1.84 f23(A, B, C) -> Com_1(f28(A, B, D)) :|: 9 >= A 4.01/1.84 f23(A, B, C) -> Com_1(f23(A + 1, B, C)) :|: 9 >= A 4.01/1.84 f28(A, B, C) -> Com_1(f23(A + 1, B, C)) :|: TRUE 4.01/1.84 f28(A, B, C) -> Com_1(f23(A + 1, B, C)) :|: 8 >= D 4.01/1.84 f23(A, B, C) -> Com_1(f38(A, B, C)) :|: A >= 10 4.01/1.84 f8(A, B, C) -> Com_1(f8(A + 1, A, C)) :|: 9 >= A 4.01/1.84 f14(A, B, C) -> Com_1(f8(A + 1, B, C)) :|: TRUE 4.01/1.84 f14(A, B, C) -> Com_1(f8(A + 1, B, C)) :|: 8 >= D 4.01/1.84 f8(A, B, C) -> Com_1(f23(0, B, C)) :|: A >= 10 4.01/1.84 4.01/1.84 The start-symbols are:[f0_3] 4.01/1.84 4.01/1.84 4.01/1.84 ---------------------------------------- 4.01/1.84 4.01/1.84 (1) Koat Proof (FINISHED) 4.01/1.84 YES(?, 145) 4.01/1.84 4.01/1.84 4.01/1.84 4.01/1.84 Initial complexity problem: 4.01/1.84 4.01/1.84 1: T: 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f8(0, ar_1, ar_2)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f14(ar_0, ar_0, ar_2)) [ 9 >= ar_0 /\ 9 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f14(ar_0, ar_0, ar_2)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0, ar_1, ar_2) -> Com_1(f28(ar_0, ar_1, d)) [ 9 >= ar_0 /\ 0 >= e + 1 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0, ar_1, ar_2) -> Com_1(f28(ar_0, ar_1, d)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0, ar_1, ar_2) -> Com_1(f23(ar_0 + 1, ar_1, ar_2)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f28(ar_0, ar_1, ar_2) -> Com_1(f23(ar_0 + 1, ar_1, ar_2)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f28(ar_0, ar_1, ar_2) -> Com_1(f23(ar_0 + 1, ar_1, ar_2)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0, ar_1, ar_2) -> Com_1(f38(ar_0, ar_1, ar_2)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 1, ar_0, ar_2)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 1, ar_1, ar_2)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0, ar_1, ar_2) -> Com_1(f8(ar_0 + 1, ar_1, ar_2)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f23(0, ar_1, ar_2)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.01/1.84 4.01/1.84 start location: koat_start 4.01/1.84 4.01/1.84 leaf cost: 0 4.01/1.84 4.01/1.84 4.01/1.84 4.01/1.84 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [ar_0]. 4.01/1.84 4.01/1.84 We thus obtain the following problem: 4.01/1.84 4.01/1.84 2: T: 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 /\ 0 >= e + 1 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 /\ 9 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 4.01/1.84 4.01/1.84 start location: koat_start 4.01/1.84 4.01/1.84 leaf cost: 0 4.01/1.84 4.01/1.84 4.01/1.84 4.01/1.84 Repeatedly propagating knowledge in problem 2 produces the following problem: 4.01/1.84 4.01/1.84 3: T: 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 /\ 0 >= e + 1 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 /\ 9 >= d ] 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 4.01/1.84 4.01/1.84 start location: koat_start 4.01/1.84 4.01/1.84 leaf cost: 0 4.01/1.84 4.01/1.84 4.01/1.84 4.01/1.84 A polynomial rank function with 4.01/1.84 4.01/1.84 Pol(koat_start) = 2 4.01/1.84 4.01/1.84 Pol(f0) = 2 4.01/1.84 4.01/1.84 Pol(f8) = 2 4.01/1.84 4.01/1.84 Pol(f23) = 1 4.01/1.84 4.01/1.84 Pol(f14) = 2 4.01/1.84 4.01/1.84 Pol(f38) = 0 4.01/1.84 4.01/1.84 Pol(f28) = 1 4.01/1.84 4.01/1.84 orients all transitions weakly and the transitions 4.01/1.84 4.01/1.84 f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 strictly and produces the following problem: 4.01/1.84 4.01/1.84 4: T: 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 4.01/1.84 4.01/1.84 (Comp: 2, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 2, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 /\ 0 >= e + 1 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 /\ 9 >= d ] 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 4.01/1.84 4.01/1.84 start location: koat_start 4.01/1.84 4.01/1.84 leaf cost: 0 4.01/1.84 4.01/1.84 4.01/1.84 4.01/1.84 A polynomial rank function with 4.01/1.84 4.01/1.84 Pol(koat_start) = 10 4.01/1.84 4.01/1.84 Pol(f0) = 10 4.01/1.84 4.01/1.84 Pol(f8) = 10 4.01/1.84 4.01/1.84 Pol(f23) = -V_1 + 10 4.01/1.84 4.01/1.84 Pol(f14) = 10 4.01/1.84 4.01/1.84 Pol(f38) = -V_1 4.01/1.84 4.01/1.84 Pol(f28) = -V_1 + 9 4.01/1.84 4.01/1.84 orients all transitions weakly and the transitions 4.01/1.84 4.01/1.84 f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 /\ 0 >= e + 1 ] 4.01/1.84 4.01/1.84 f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 strictly and produces the following problem: 4.01/1.84 4.01/1.84 5: T: 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 4.01/1.84 4.01/1.84 (Comp: 2, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 2, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 /\ 0 >= e + 1 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 /\ 9 >= d ] 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 4.01/1.84 4.01/1.84 start location: koat_start 4.01/1.84 4.01/1.84 leaf cost: 0 4.01/1.84 4.01/1.84 4.01/1.84 4.01/1.84 Repeatedly propagating knowledge in problem 5 produces the following problem: 4.01/1.84 4.01/1.84 6: T: 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 4.01/1.84 4.01/1.84 (Comp: 2, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 2, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: 20, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: 20, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 /\ 0 >= e + 1 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 /\ 9 >= d ] 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 4.01/1.84 4.01/1.84 start location: koat_start 4.01/1.84 4.01/1.84 leaf cost: 0 4.01/1.84 4.01/1.84 4.01/1.84 4.01/1.84 A polynomial rank function with 4.01/1.84 4.01/1.84 Pol(f8) = -V_1 + 10 4.01/1.84 4.01/1.84 Pol(f14) = -V_1 + 9 4.01/1.84 4.01/1.84 and size complexities 4.01/1.84 4.01/1.84 S("f0(ar_0) -> Com_1(f8(0))", 0-0) = 0 4.01/1.84 4.01/1.84 S("f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 /\\ 9 >= d ]", 0-0) = ? 4.01/1.84 4.01/1.84 S("f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 ]", 0-0) = ? 4.01/1.84 4.01/1.84 S("f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 /\\ 0 >= e + 1 ]", 0-0) = 50 4.01/1.84 4.01/1.84 S("f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 ]", 0-0) = 50 4.01/1.84 4.01/1.84 S("f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 9 >= ar_0 ]", 0-0) = 50 4.01/1.84 4.01/1.84 S("f28(ar_0) -> Com_1(f23(ar_0 + 1))", 0-0) = 50 4.01/1.84 4.01/1.84 S("f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 8 >= d ]", 0-0) = 50 4.01/1.84 4.01/1.84 S("f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 10 ]", 0-0) = 50 4.01/1.84 4.01/1.84 S("f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 9 >= ar_0 ]", 0-0) = ? 4.01/1.84 4.01/1.84 S("f14(ar_0) -> Com_1(f8(ar_0 + 1))", 0-0) = ? 4.01/1.84 4.01/1.84 S("f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 8 >= d ]", 0-0) = ? 4.01/1.84 4.01/1.84 S("f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 10 ]", 0-0) = 0 4.01/1.84 4.01/1.84 S("koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ]", 0-0) = ar_0 4.01/1.84 4.01/1.84 orients the transitions 4.01/1.84 4.01/1.84 f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 /\ 9 >= d ] 4.01/1.84 4.01/1.84 f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 f14(ar_0) -> Com_1(f8(ar_0 + 1)) 4.01/1.84 4.01/1.84 weakly and the transitions 4.01/1.84 4.01/1.84 f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 /\ 9 >= d ] 4.01/1.84 4.01/1.84 f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 strictly and produces the following problem: 4.01/1.84 4.01/1.84 7: T: 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 4.01/1.84 4.01/1.84 (Comp: 2, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: ?, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 2, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: 20, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: 20, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 /\ 0 >= e + 1 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 /\ 9 >= d ] 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 4.01/1.84 4.01/1.84 start location: koat_start 4.01/1.84 4.01/1.84 leaf cost: 0 4.01/1.84 4.01/1.84 4.01/1.84 4.01/1.84 Repeatedly propagating knowledge in problem 7 produces the following problem: 4.01/1.84 4.01/1.84 8: T: 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 0) koat_start(ar_0) -> Com_1(f0(ar_0)) [ 0 <= 0 ] 4.01/1.84 4.01/1.84 (Comp: 2, Cost: 1) f8(ar_0) -> Com_1(f23(0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: 20, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: 20, Cost: 1) f14(ar_0) -> Com_1(f8(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f8(ar_0) -> Com_1(f8(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 2, Cost: 1) f23(ar_0) -> Com_1(f38(ar_0)) [ ar_0 >= 10 ] 4.01/1.84 4.01/1.84 (Comp: 20, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) [ 8 >= d ] 4.01/1.84 4.01/1.84 (Comp: 20, Cost: 1) f28(ar_0) -> Com_1(f23(ar_0 + 1)) 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f23(ar_0 + 1)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f23(ar_0) -> Com_1(f28(ar_0)) [ 9 >= ar_0 /\ 0 >= e + 1 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 ] 4.01/1.84 4.01/1.84 (Comp: 10, Cost: 1) f8(ar_0) -> Com_1(f14(ar_0)) [ 9 >= ar_0 /\ 9 >= d ] 4.01/1.84 4.01/1.84 (Comp: 1, Cost: 1) f0(ar_0) -> Com_1(f8(0)) 4.01/1.84 4.01/1.84 start location: koat_start 4.01/1.84 4.01/1.84 leaf cost: 0 4.01/1.84 4.01/1.84 4.01/1.84 4.01/1.84 Complexity upper bound 145 4.01/1.84 4.01/1.84 4.01/1.84 4.01/1.84 Time: 0.157 sec (SMT: 0.147 sec) 4.01/1.84 4.01/1.84 4.01/1.84 ---------------------------------------- 4.01/1.84 4.01/1.84 (2) 4.01/1.84 BOUNDS(1, 1) 4.01/1.86 EOF