3.64/1.72 WORST_CASE(?, O(1)) 3.64/1.72 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.64/1.72 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.64/1.72 3.64/1.72 3.64/1.72 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.64/1.72 3.64/1.72 (0) CpxIntTrs 3.64/1.72 (1) Koat Proof [FINISHED, 7 ms] 3.64/1.72 (2) BOUNDS(1, 1) 3.64/1.72 3.64/1.72 3.64/1.72 ---------------------------------------- 3.64/1.72 3.64/1.72 (0) 3.64/1.72 Obligation: 3.64/1.72 Complexity Int TRS consisting of the following rules: 3.64/1.72 f0(A, B, C, D, E, F, G, H, I) -> Com_1(f7(30, 30, 1, 0, 2, F, G, H, I)) :|: TRUE 3.64/1.72 f7(A, B, C, D, E, F, G, H, I) -> Com_1(f7(A, B, C + D, C, E + 1, C, G, H, I)) :|: B >= E 3.64/1.72 f7(A, B, C, D, E, F, G, H, I) -> Com_1(f19(A, B, C, D, E, F, C, C, C)) :|: E >= 1 + B 3.64/1.72 3.64/1.72 The start-symbols are:[f0_9] 3.64/1.72 3.64/1.72 3.64/1.72 ---------------------------------------- 3.64/1.72 3.64/1.72 (1) Koat Proof (FINISHED) 3.64/1.72 YES(?, 31) 3.64/1.72 3.64/1.72 3.64/1.72 3.64/1.72 Initial complexity problem: 3.64/1.72 3.64/1.72 1: T: 3.64/1.72 3.64/1.72 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f7(30, 30, 1, 0, 2, ar_5, ar_6, ar_7, ar_8)) 3.64/1.72 3.64/1.72 (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f7(ar_0, ar_1, ar_2 + ar_3, ar_2, ar_4 + 1, ar_2, ar_6, ar_7, ar_8)) [ ar_1 >= ar_4 ] 3.64/1.72 3.64/1.72 (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f19(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_2, ar_2, ar_2)) [ ar_4 >= ar_1 + 1 ] 3.64/1.72 3.64/1.72 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8)) [ 0 <= 0 ] 3.64/1.72 3.64/1.72 start location: koat_start 3.64/1.72 3.64/1.72 leaf cost: 0 3.64/1.72 3.64/1.72 3.64/1.72 3.64/1.72 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.64/1.72 3.64/1.72 2: T: 3.64/1.72 3.64/1.72 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f7(30, 30, 1, 0, 2, ar_5, ar_6, ar_7, ar_8)) 3.64/1.72 3.64/1.72 (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f7(ar_0, ar_1, ar_2 + ar_3, ar_2, ar_4 + 1, ar_2, ar_6, ar_7, ar_8)) [ ar_1 >= ar_4 ] 3.64/1.72 3.64/1.72 (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f19(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_2, ar_2, ar_2)) [ ar_4 >= ar_1 + 1 ] 3.64/1.72 3.64/1.72 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8)) [ 0 <= 0 ] 3.64/1.72 3.64/1.72 start location: koat_start 3.64/1.72 3.64/1.72 leaf cost: 0 3.64/1.72 3.64/1.72 3.64/1.72 3.64/1.72 A polynomial rank function with 3.64/1.72 3.64/1.72 Pol(f0) = 1 3.64/1.72 3.64/1.72 Pol(f7) = 1 3.64/1.72 3.64/1.72 Pol(f19) = 0 3.64/1.72 3.64/1.72 Pol(koat_start) = 1 3.64/1.72 3.64/1.72 orients all transitions weakly and the transition 3.64/1.72 3.64/1.72 f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f19(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_2, ar_2, ar_2)) [ ar_4 >= ar_1 + 1 ] 3.64/1.72 3.64/1.72 strictly and produces the following problem: 3.64/1.72 3.64/1.72 3: T: 3.64/1.72 3.64/1.72 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f7(30, 30, 1, 0, 2, ar_5, ar_6, ar_7, ar_8)) 3.64/1.72 3.64/1.72 (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f7(ar_0, ar_1, ar_2 + ar_3, ar_2, ar_4 + 1, ar_2, ar_6, ar_7, ar_8)) [ ar_1 >= ar_4 ] 3.64/1.72 3.64/1.72 (Comp: 1, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f19(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_2, ar_2, ar_2)) [ ar_4 >= ar_1 + 1 ] 3.64/1.72 3.64/1.72 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8)) [ 0 <= 0 ] 3.64/1.72 3.64/1.72 start location: koat_start 3.64/1.72 3.64/1.72 leaf cost: 0 3.64/1.72 3.64/1.72 3.64/1.72 3.64/1.72 A polynomial rank function with 3.64/1.72 3.64/1.72 Pol(f0) = 29 3.64/1.72 3.64/1.72 Pol(f7) = V_2 - V_5 + 1 3.64/1.72 3.64/1.72 Pol(f19) = V_2 - V_5 3.64/1.72 3.64/1.72 Pol(koat_start) = 29 3.64/1.72 3.64/1.72 orients all transitions weakly and the transition 3.64/1.72 3.64/1.72 f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f7(ar_0, ar_1, ar_2 + ar_3, ar_2, ar_4 + 1, ar_2, ar_6, ar_7, ar_8)) [ ar_1 >= ar_4 ] 3.64/1.72 3.64/1.72 strictly and produces the following problem: 3.64/1.72 3.64/1.72 4: T: 3.64/1.72 3.64/1.72 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f7(30, 30, 1, 0, 2, ar_5, ar_6, ar_7, ar_8)) 3.64/1.72 3.64/1.72 (Comp: 29, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f7(ar_0, ar_1, ar_2 + ar_3, ar_2, ar_4 + 1, ar_2, ar_6, ar_7, ar_8)) [ ar_1 >= ar_4 ] 3.64/1.72 3.64/1.72 (Comp: 1, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f19(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_2, ar_2, ar_2)) [ ar_4 >= ar_1 + 1 ] 3.64/1.72 3.64/1.72 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5, ar_6, ar_7, ar_8)) [ 0 <= 0 ] 3.64/1.72 3.64/1.72 start location: koat_start 3.64/1.72 3.64/1.72 leaf cost: 0 3.64/1.72 3.64/1.72 3.64/1.72 3.64/1.72 Complexity upper bound 31 3.64/1.72 3.64/1.72 3.64/1.72 3.64/1.72 Time: 0.094 sec (SMT: 0.086 sec) 3.64/1.72 3.64/1.72 3.64/1.72 ---------------------------------------- 3.64/1.72 3.64/1.72 (2) 3.64/1.72 BOUNDS(1, 1) 3.64/1.75 EOF