3.78/1.78 WORST_CASE(Omega(n^1), O(n^1)) 3.78/1.79 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.78/1.79 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.78/1.79 3.78/1.79 3.78/1.79 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 3.78/1.79 3.78/1.79 (0) CpxIntTrs 3.78/1.79 (1) Koat Proof [FINISHED, 17 ms] 3.78/1.79 (2) BOUNDS(1, n^1) 3.78/1.79 (3) Loat Proof [FINISHED, 122 ms] 3.78/1.79 (4) BOUNDS(n^1, INF) 3.78/1.79 3.78/1.79 3.78/1.79 ---------------------------------------- 3.78/1.79 3.78/1.79 (0) 3.78/1.79 Obligation: 3.78/1.79 Complexity Int TRS consisting of the following rules: 3.78/1.79 f300(A, B, C) -> Com_1(f300(1 + A, B, C)) :|: B >= 1 + A 3.78/1.79 f300(A, B, C) -> Com_1(f1(A, B, D)) :|: A >= B 3.78/1.79 f2(A, B, C) -> Com_1(f300(A, B, C)) :|: TRUE 3.78/1.79 3.78/1.79 The start-symbols are:[f2_3] 3.78/1.79 3.78/1.79 3.78/1.79 ---------------------------------------- 3.78/1.79 3.78/1.79 (1) Koat Proof (FINISHED) 3.78/1.79 YES(?, ar_0 + ar_1 + 2) 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Initial complexity problem: 3.78/1.79 3.78/1.79 1: T: 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f300(ar_0, ar_1, ar_2) -> Com_1(f300(ar_0, ar_1 + 1, ar_2)) [ ar_0 >= ar_1 + 1 ] 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f300(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, d)) [ ar_1 >= ar_0 ] 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2) -> Com_1(f300(ar_0, ar_1, ar_2)) 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f2(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.78/1.79 3.78/1.79 start location: koat_start 3.78/1.79 3.78/1.79 leaf cost: 0 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.78/1.79 3.78/1.79 2: T: 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f300(ar_0, ar_1, ar_2) -> Com_1(f300(ar_0, ar_1 + 1, ar_2)) [ ar_0 >= ar_1 + 1 ] 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f300(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, d)) [ ar_1 >= ar_0 ] 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2) -> Com_1(f300(ar_0, ar_1, ar_2)) 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f2(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.78/1.79 3.78/1.79 start location: koat_start 3.78/1.79 3.78/1.79 leaf cost: 0 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 A polynomial rank function with 3.78/1.79 3.78/1.79 Pol(f300) = 1 3.78/1.79 3.78/1.79 Pol(f1) = 0 3.78/1.79 3.78/1.79 Pol(f2) = 1 3.78/1.79 3.78/1.79 Pol(koat_start) = 1 3.78/1.79 3.78/1.79 orients all transitions weakly and the transition 3.78/1.79 3.78/1.79 f300(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, d)) [ ar_1 >= ar_0 ] 3.78/1.79 3.78/1.79 strictly and produces the following problem: 3.78/1.79 3.78/1.79 3: T: 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f300(ar_0, ar_1, ar_2) -> Com_1(f300(ar_0, ar_1 + 1, ar_2)) [ ar_0 >= ar_1 + 1 ] 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 1) f300(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, d)) [ ar_1 >= ar_0 ] 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2) -> Com_1(f300(ar_0, ar_1, ar_2)) 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f2(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.78/1.79 3.78/1.79 start location: koat_start 3.78/1.79 3.78/1.79 leaf cost: 0 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 A polynomial rank function with 3.78/1.79 3.78/1.79 Pol(f300) = V_1 - V_2 3.78/1.79 3.78/1.79 Pol(f1) = V_1 - V_2 3.78/1.79 3.78/1.79 Pol(f2) = V_1 - V_2 3.78/1.79 3.78/1.79 Pol(koat_start) = V_1 - V_2 3.78/1.79 3.78/1.79 orients all transitions weakly and the transition 3.78/1.79 3.78/1.79 f300(ar_0, ar_1, ar_2) -> Com_1(f300(ar_0, ar_1 + 1, ar_2)) [ ar_0 >= ar_1 + 1 ] 3.78/1.79 3.78/1.79 strictly and produces the following problem: 3.78/1.79 3.78/1.79 4: T: 3.78/1.79 3.78/1.79 (Comp: ar_0 + ar_1, Cost: 1) f300(ar_0, ar_1, ar_2) -> Com_1(f300(ar_0, ar_1 + 1, ar_2)) [ ar_0 >= ar_1 + 1 ] 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 1) f300(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, d)) [ ar_1 >= ar_0 ] 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2) -> Com_1(f300(ar_0, ar_1, ar_2)) 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f2(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.78/1.79 3.78/1.79 start location: koat_start 3.78/1.79 3.78/1.79 leaf cost: 0 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Complexity upper bound ar_0 + ar_1 + 2 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Time: 0.033 sec (SMT: 0.030 sec) 3.78/1.79 3.78/1.79 3.78/1.79 ---------------------------------------- 3.78/1.79 3.78/1.79 (2) 3.78/1.79 BOUNDS(1, n^1) 3.78/1.79 3.78/1.79 ---------------------------------------- 3.78/1.79 3.78/1.79 (3) Loat Proof (FINISHED) 3.78/1.79 3.78/1.79 3.78/1.79 ### Pre-processing the ITS problem ### 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Initial linear ITS problem 3.78/1.79 3.78/1.79 Start location: f2 3.78/1.79 3.78/1.79 0: f300 -> f300 : B'=1+B, [ A>=1+B ], cost: 1 3.78/1.79 3.78/1.79 1: f300 -> f1 : C'=free, [ B>=A ], cost: 1 3.78/1.79 3.78/1.79 2: f2 -> f300 : [], cost: 1 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Removed unreachable and leaf rules: 3.78/1.79 3.78/1.79 Start location: f2 3.78/1.79 3.78/1.79 0: f300 -> f300 : B'=1+B, [ A>=1+B ], cost: 1 3.78/1.79 3.78/1.79 2: f2 -> f300 : [], cost: 1 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 ### Simplification by acceleration and chaining ### 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Accelerating simple loops of location 0. 3.78/1.79 3.78/1.79 Accelerating the following rules: 3.78/1.79 3.78/1.79 0: f300 -> f300 : B'=1+B, [ A>=1+B ], cost: 1 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Accelerated rule 0 with metering function A-B, yielding the new rule 3. 3.78/1.79 3.78/1.79 Removing the simple loops: 0. 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Accelerated all simple loops using metering functions (where possible): 3.78/1.79 3.78/1.79 Start location: f2 3.78/1.79 3.78/1.79 3: f300 -> f300 : B'=A, [ A>=1+B ], cost: A-B 3.78/1.79 3.78/1.79 2: f2 -> f300 : [], cost: 1 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Chained accelerated rules (with incoming rules): 3.78/1.79 3.78/1.79 Start location: f2 3.78/1.79 3.78/1.79 2: f2 -> f300 : [], cost: 1 3.78/1.79 3.78/1.79 4: f2 -> f300 : B'=A, [ A>=1+B ], cost: 1+A-B 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Removed unreachable locations (and leaf rules with constant cost): 3.78/1.79 3.78/1.79 Start location: f2 3.78/1.79 3.78/1.79 4: f2 -> f300 : B'=A, [ A>=1+B ], cost: 1+A-B 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 ### Computing asymptotic complexity ### 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Fully simplified ITS problem 3.78/1.79 3.78/1.79 Start location: f2 3.78/1.79 3.78/1.79 4: f2 -> f300 : B'=A, [ A>=1+B ], cost: 1+A-B 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Computing asymptotic complexity for rule 4 3.78/1.79 3.78/1.79 Solved the limit problem by the following transformations: 3.78/1.79 3.78/1.79 Created initial limit problem: 3.78/1.79 3.78/1.79 1+A-B (+), A-B (+/+!) [not solved] 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 removing all constraints (solved by SMT) 3.78/1.79 3.78/1.79 resulting limit problem: [solved] 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 applying transformation rule (C) using substitution {A==0,B==-n} 3.78/1.79 3.78/1.79 resulting limit problem: 3.78/1.79 3.78/1.79 [solved] 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Solution: 3.78/1.79 3.78/1.79 A / 0 3.78/1.79 3.78/1.79 B / -n 3.78/1.79 3.78/1.79 Resulting cost 1+n has complexity: Poly(n^1) 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Found new complexity Poly(n^1). 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Obtained the following overall complexity (w.r.t. the length of the input n): 3.78/1.79 3.78/1.79 Complexity: Poly(n^1) 3.78/1.79 3.78/1.79 Cpx degree: 1 3.78/1.79 3.78/1.79 Solved cost: 1+n 3.78/1.79 3.78/1.79 Rule cost: 1+A-B 3.78/1.79 3.78/1.79 Rule guard: [ A>=1+B ] 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 WORST_CASE(Omega(n^1),?) 3.78/1.79 3.78/1.79 3.78/1.79 ---------------------------------------- 3.78/1.79 3.78/1.79 (4) 3.78/1.79 BOUNDS(n^1, INF) 3.86/1.81 EOF