3.26/1.71 WORST_CASE(?, O(1)) 3.26/1.72 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.26/1.72 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.26/1.72 3.26/1.72 3.26/1.72 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.26/1.72 3.26/1.72 (0) CpxIntTrs 3.26/1.72 (1) Koat Proof [FINISHED, 29 ms] 3.26/1.72 (2) BOUNDS(1, 1) 3.26/1.72 3.26/1.72 3.26/1.72 ---------------------------------------- 3.26/1.72 3.26/1.72 (0) 3.26/1.72 Obligation: 3.26/1.72 Complexity Int TRS consisting of the following rules: 3.26/1.72 f12(A, B, C, D, E) -> Com_1(f12(A + 1, B, C, D, E)) :|: 9 >= A 3.26/1.72 f25(A, B, C, D, E) -> Com_1(f25(A, B + 1, C, D, E)) :|: 9 >= B 3.26/1.72 f25(A, B, C, D, E) -> Com_1(f36(A, B, C, D, E)) :|: B >= 10 3.26/1.72 f12(A, B, C, D, E) -> Com_1(f25(A, 0, F, D, E)) :|: A >= 10 3.26/1.72 f0(A, B, C, D, E) -> Com_1(f12(0, B, C, F, G)) :|: TRUE 3.26/1.72 3.26/1.72 The start-symbols are:[f0_5] 3.26/1.72 3.26/1.72 3.26/1.72 ---------------------------------------- 3.26/1.72 3.26/1.72 (1) Koat Proof (FINISHED) 3.26/1.72 YES(?, 25) 3.26/1.72 3.26/1.72 3.26/1.72 3.26/1.72 Initial complexity problem: 3.26/1.72 3.26/1.72 1: T: 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ 9 >= ar_0 ] 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, ar_1 + 1, ar_2, ar_3, ar_4)) [ 9 >= ar_1 ] 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f36(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 10 ] 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, 0, f, ar_3, ar_4)) [ ar_0 >= 10 ] 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(0, ar_1, ar_2, f, g)) 3.26/1.72 3.26/1.72 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.26/1.72 3.26/1.72 start location: koat_start 3.26/1.72 3.26/1.72 leaf cost: 0 3.26/1.72 3.26/1.72 3.26/1.72 3.26/1.72 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.26/1.72 3.26/1.72 2: T: 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ 9 >= ar_0 ] 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, ar_1 + 1, ar_2, ar_3, ar_4)) [ 9 >= ar_1 ] 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f36(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 10 ] 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, 0, f, ar_3, ar_4)) [ ar_0 >= 10 ] 3.26/1.72 3.26/1.72 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(0, ar_1, ar_2, f, g)) 3.26/1.72 3.26/1.72 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.26/1.72 3.26/1.72 start location: koat_start 3.26/1.72 3.26/1.72 leaf cost: 0 3.26/1.72 3.26/1.72 3.26/1.72 3.26/1.72 A polynomial rank function with 3.26/1.72 3.26/1.72 Pol(f12) = 2 3.26/1.72 3.26/1.72 Pol(f25) = 1 3.26/1.72 3.26/1.72 Pol(f36) = 0 3.26/1.72 3.26/1.72 Pol(f0) = 2 3.26/1.72 3.26/1.72 Pol(koat_start) = 2 3.26/1.72 3.26/1.72 orients all transitions weakly and the transitions 3.26/1.72 3.26/1.72 f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f36(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 10 ] 3.26/1.72 3.26/1.72 f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, 0, f, ar_3, ar_4)) [ ar_0 >= 10 ] 3.26/1.72 3.26/1.72 strictly and produces the following problem: 3.26/1.72 3.26/1.72 3: T: 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ 9 >= ar_0 ] 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, ar_1 + 1, ar_2, ar_3, ar_4)) [ 9 >= ar_1 ] 3.26/1.72 3.26/1.72 (Comp: 2, Cost: 1) f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f36(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 10 ] 3.26/1.72 3.26/1.72 (Comp: 2, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, 0, f, ar_3, ar_4)) [ ar_0 >= 10 ] 3.26/1.72 3.26/1.72 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(0, ar_1, ar_2, f, g)) 3.26/1.72 3.26/1.72 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.26/1.72 3.26/1.72 start location: koat_start 3.26/1.72 3.26/1.72 leaf cost: 0 3.26/1.72 3.26/1.72 3.26/1.72 3.26/1.72 A polynomial rank function with 3.26/1.72 3.26/1.72 Pol(f12) = -V_1 + 10 3.26/1.72 3.26/1.72 Pol(f25) = -V_1 3.26/1.72 3.26/1.72 Pol(f36) = -V_1 3.26/1.72 3.26/1.72 Pol(f0) = 10 3.26/1.72 3.26/1.72 Pol(koat_start) = 10 3.26/1.72 3.26/1.72 orients all transitions weakly and the transition 3.26/1.72 3.26/1.72 f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ 9 >= ar_0 ] 3.26/1.72 3.26/1.72 strictly and produces the following problem: 3.26/1.72 3.26/1.72 4: T: 3.26/1.72 3.26/1.72 (Comp: 10, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ 9 >= ar_0 ] 3.26/1.72 3.26/1.72 (Comp: ?, Cost: 1) f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, ar_1 + 1, ar_2, ar_3, ar_4)) [ 9 >= ar_1 ] 3.26/1.72 3.26/1.72 (Comp: 2, Cost: 1) f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f36(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 10 ] 3.26/1.72 3.26/1.72 (Comp: 2, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, 0, f, ar_3, ar_4)) [ ar_0 >= 10 ] 3.26/1.72 3.26/1.72 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(0, ar_1, ar_2, f, g)) 3.26/1.72 3.26/1.72 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.26/1.72 3.26/1.72 start location: koat_start 3.26/1.72 3.26/1.72 leaf cost: 0 3.26/1.72 3.26/1.72 3.26/1.72 3.26/1.72 A polynomial rank function with 3.26/1.72 3.26/1.72 Pol(f12) = 10 3.26/1.72 3.26/1.72 Pol(f25) = -V_2 + 10 3.26/1.72 3.26/1.72 Pol(f36) = -V_2 3.26/1.72 3.26/1.72 Pol(f0) = 10 3.26/1.72 3.26/1.72 Pol(koat_start) = 10 3.26/1.72 3.26/1.72 orients all transitions weakly and the transition 3.26/1.72 3.26/1.72 f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, ar_1 + 1, ar_2, ar_3, ar_4)) [ 9 >= ar_1 ] 3.26/1.72 3.26/1.72 strictly and produces the following problem: 3.26/1.72 3.26/1.72 5: T: 3.26/1.72 3.26/1.72 (Comp: 10, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(ar_0 + 1, ar_1, ar_2, ar_3, ar_4)) [ 9 >= ar_0 ] 3.26/1.72 3.26/1.72 (Comp: 10, Cost: 1) f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, ar_1 + 1, ar_2, ar_3, ar_4)) [ 9 >= ar_1 ] 3.26/1.72 3.26/1.72 (Comp: 2, Cost: 1) f25(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f36(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 10 ] 3.26/1.72 3.26/1.72 (Comp: 2, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f25(ar_0, 0, f, ar_3, ar_4)) [ ar_0 >= 10 ] 3.26/1.72 3.26/1.72 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f12(0, ar_1, ar_2, f, g)) 3.26/1.72 3.26/1.72 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.26/1.72 3.26/1.72 start location: koat_start 3.26/1.72 3.26/1.72 leaf cost: 0 3.26/1.72 3.26/1.72 3.26/1.72 3.26/1.72 Complexity upper bound 25 3.26/1.72 3.26/1.72 3.26/1.72 3.26/1.72 Time: 0.099 sec (SMT: 0.089 sec) 3.26/1.72 3.26/1.72 3.26/1.72 ---------------------------------------- 3.26/1.72 3.26/1.72 (2) 3.26/1.72 BOUNDS(1, 1) 3.65/1.73 EOF