3.35/1.72 WORST_CASE(?, O(1)) 3.35/1.73 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.35/1.73 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.35/1.73 3.35/1.73 3.35/1.73 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.35/1.73 3.35/1.73 (0) CpxIntTrs 3.35/1.73 (1) Koat Proof [FINISHED, 22 ms] 3.35/1.73 (2) BOUNDS(1, 1) 3.35/1.73 3.35/1.73 3.35/1.73 ---------------------------------------- 3.35/1.73 3.35/1.73 (0) 3.35/1.73 Obligation: 3.35/1.73 Complexity Int TRS consisting of the following rules: 3.35/1.73 f12(A, B, C, D, E, F) -> Com_1(f5(4, 0, 0, D, E, F)) :|: TRUE 3.35/1.73 f5(A, B, C, D, E, F) -> Com_1(f11(A, B, 0, 0, 0, F)) :|: B >= A && C >= 0 && C <= 0 3.35/1.73 f5(A, B, C, D, E, F) -> Com_1(f10(A, B, C, C, C, F)) :|: C >= 1 3.35/1.73 f5(A, B, C, D, E, F) -> Com_1(f10(A, B, C, C, C, F)) :|: 0 >= C + 1 3.35/1.73 f7(A, B, C, D, E, F) -> Com_1(f5(A, 1 + B, G, H, E, G)) :|: TRUE 3.35/1.73 f8(A, B, C, D, E, F) -> Com_1(f5(A, 1 + B, G, H, E, G)) :|: TRUE 3.35/1.73 f5(A, B, C, D, E, F) -> Com_1(f5(A, 1 + B, G, H, E, G)) :|: A >= 1 + B && C >= 0 && C <= 0 3.35/1.73 3.35/1.73 The start-symbols are:[f12_6] 3.35/1.73 3.35/1.73 3.35/1.73 ---------------------------------------- 3.35/1.73 3.35/1.73 (1) Koat Proof (FINISHED) 3.35/1.73 YES(?, 8) 3.35/1.73 3.35/1.73 3.35/1.73 3.35/1.73 Initial complexity problem: 3.35/1.73 3.35/1.73 1: T: 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f12(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f5(4, 0, 0, ar_3, ar_4, ar_5)) 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f11(ar_0, ar_1, 0, 0, 0, ar_5)) [ ar_1 >= ar_0 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f10(ar_0, ar_1, ar_2, ar_2, ar_2, ar_5)) [ ar_2 >= 1 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f10(ar_0, ar_1, ar_2, ar_2, ar_2, ar_5)) [ 0 >= ar_2 + 1 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f5(ar_0, ar_1 + 1, g, h, ar_4, g)) 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f5(ar_0, ar_1 + 1, g, h, ar_4, g)) 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f5(ar_0, ar_1 + 1, g, h, ar_4, g)) [ ar_0 >= ar_1 + 1 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f12(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] 3.35/1.73 3.35/1.73 start location: koat_start 3.35/1.73 3.35/1.73 leaf cost: 0 3.35/1.73 3.35/1.73 3.35/1.73 3.35/1.73 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [ar_0, ar_1, ar_2]. 3.35/1.73 3.35/1.73 We thus obtain the following problem: 3.35/1.73 3.35/1.73 2: T: 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f12(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f5(ar_0, ar_1 + 1, g)) [ ar_0 >= ar_1 + 1 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f8(ar_0, ar_1, ar_2) -> Com_1(f5(ar_0, ar_1 + 1, g)) 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2) -> Com_1(f5(ar_0, ar_1 + 1, g)) 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ 0 >= ar_2 + 1 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f11(ar_0, ar_1, 0)) [ ar_1 >= ar_0 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f12(ar_0, ar_1, ar_2) -> Com_1(f5(4, 0, 0)) 3.35/1.73 3.35/1.73 start location: koat_start 3.35/1.73 3.35/1.73 leaf cost: 0 3.35/1.73 3.35/1.73 3.35/1.73 3.35/1.73 Testing for reachability in the complexity graph removes the following transitions from problem 2: 3.35/1.73 3.35/1.73 f8(ar_0, ar_1, ar_2) -> Com_1(f5(ar_0, ar_1 + 1, g)) 3.35/1.73 3.35/1.73 f7(ar_0, ar_1, ar_2) -> Com_1(f5(ar_0, ar_1 + 1, g)) 3.35/1.73 3.35/1.73 We thus obtain the following problem: 3.35/1.73 3.35/1.73 3: T: 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f11(ar_0, ar_1, 0)) [ ar_1 >= ar_0 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ 0 >= ar_2 + 1 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f5(ar_0, ar_1 + 1, g)) [ ar_0 >= ar_1 + 1 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f12(ar_0, ar_1, ar_2) -> Com_1(f5(4, 0, 0)) 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f12(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.35/1.73 3.35/1.73 start location: koat_start 3.35/1.73 3.35/1.73 leaf cost: 0 3.35/1.73 3.35/1.73 3.35/1.73 3.35/1.73 Repeatedly propagating knowledge in problem 3 produces the following problem: 3.35/1.73 3.35/1.73 4: T: 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f11(ar_0, ar_1, 0)) [ ar_1 >= ar_0 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ 0 >= ar_2 + 1 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f5(ar_0, ar_1 + 1, g)) [ ar_0 >= ar_1 + 1 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 1) f12(ar_0, ar_1, ar_2) -> Com_1(f5(4, 0, 0)) 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f12(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.35/1.73 3.35/1.73 start location: koat_start 3.35/1.73 3.35/1.73 leaf cost: 0 3.35/1.73 3.35/1.73 3.35/1.73 3.35/1.73 A polynomial rank function with 3.35/1.73 3.35/1.73 Pol(f5) = 1 3.35/1.73 3.35/1.73 Pol(f11) = 0 3.35/1.73 3.35/1.73 Pol(f10) = 0 3.35/1.73 3.35/1.73 Pol(f12) = 1 3.35/1.73 3.35/1.73 Pol(koat_start) = 1 3.35/1.73 3.35/1.73 orients all transitions weakly and the transitions 3.35/1.73 3.35/1.73 f5(ar_0, ar_1, ar_2) -> Com_1(f11(ar_0, ar_1, 0)) [ ar_1 >= ar_0 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.35/1.73 3.35/1.73 f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ 0 >= ar_2 + 1 ] 3.35/1.73 3.35/1.73 strictly and produces the following problem: 3.35/1.73 3.35/1.73 5: T: 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f11(ar_0, ar_1, 0)) [ ar_1 >= ar_0 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ 0 >= ar_2 + 1 ] 3.35/1.73 3.35/1.73 (Comp: ?, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f5(ar_0, ar_1 + 1, g)) [ ar_0 >= ar_1 + 1 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 1) f12(ar_0, ar_1, ar_2) -> Com_1(f5(4, 0, 0)) 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f12(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.35/1.73 3.35/1.73 start location: koat_start 3.35/1.73 3.35/1.73 leaf cost: 0 3.35/1.73 3.35/1.73 3.35/1.73 3.35/1.73 A polynomial rank function with 3.35/1.73 3.35/1.73 Pol(f5) = V_1 - V_2 3.35/1.73 3.35/1.73 Pol(f11) = V_1 - V_2 3.35/1.73 3.35/1.73 Pol(f10) = V_1 - V_2 3.35/1.73 3.35/1.73 Pol(f12) = 4 3.35/1.73 3.35/1.73 Pol(koat_start) = 4 3.35/1.73 3.35/1.73 orients all transitions weakly and the transition 3.35/1.73 3.35/1.73 f5(ar_0, ar_1, ar_2) -> Com_1(f5(ar_0, ar_1 + 1, g)) [ ar_0 >= ar_1 + 1 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 strictly and produces the following problem: 3.35/1.73 3.35/1.73 6: T: 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f11(ar_0, ar_1, 0)) [ ar_1 >= ar_0 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ ar_2 >= 1 ] 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f10(ar_0, ar_1, ar_2)) [ 0 >= ar_2 + 1 ] 3.35/1.73 3.35/1.73 (Comp: 4, Cost: 1) f5(ar_0, ar_1, ar_2) -> Com_1(f5(ar_0, ar_1 + 1, g)) [ ar_0 >= ar_1 + 1 /\ ar_2 = 0 ] 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 1) f12(ar_0, ar_1, ar_2) -> Com_1(f5(4, 0, 0)) 3.35/1.73 3.35/1.73 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f12(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.35/1.73 3.35/1.73 start location: koat_start 3.35/1.73 3.35/1.73 leaf cost: 0 3.35/1.73 3.35/1.73 3.35/1.73 3.35/1.73 Complexity upper bound 8 3.35/1.73 3.35/1.73 3.35/1.73 3.35/1.73 Time: 0.058 sec (SMT: 0.051 sec) 3.35/1.73 3.35/1.73 3.35/1.73 ---------------------------------------- 3.35/1.73 3.35/1.73 (2) 3.35/1.73 BOUNDS(1, 1) 3.35/1.75 EOF