4.06/1.88 WORST_CASE(Omega(n^1), O(n^1)) 4.06/1.88 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.06/1.88 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.06/1.88 4.06/1.88 4.06/1.88 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.06/1.88 4.06/1.88 (0) CpxIntTrs 4.06/1.88 (1) Koat Proof [FINISHED, 10 ms] 4.06/1.88 (2) BOUNDS(1, n^1) 4.06/1.88 (3) Loat Proof [FINISHED, 141 ms] 4.06/1.88 (4) BOUNDS(n^1, INF) 4.06/1.88 4.06/1.88 4.06/1.88 ---------------------------------------- 4.06/1.88 4.06/1.88 (0) 4.06/1.88 Obligation: 4.06/1.88 Complexity Int TRS consisting of the following rules: 4.06/1.88 f3(A, B, C, D) -> Com_1(f1(0, B, C, D)) :|: TRUE 4.06/1.88 f1(A, B, C, D) -> Com_1(f2(A, B, C, E)) :|: B >= C 4.06/1.88 f1(A, B, C, D) -> Com_1(f2(1, 1 + B, C, E)) :|: B + 1 >= C && B + 1 <= C && A >= 0 && A <= 0 4.06/1.88 f1(A, B, C, D) -> Com_1(f1(0, 1 + B, -(1) + C, D)) :|: C >= 2 + B && C >= 1 + B && A >= 0 && A <= 0 4.06/1.88 4.06/1.88 The start-symbols are:[f3_4] 4.06/1.88 4.06/1.88 4.06/1.88 ---------------------------------------- 4.06/1.88 4.06/1.88 (1) Koat Proof (FINISHED) 4.06/1.88 YES(?, ar_1 + ar_2 + 3) 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Initial complexity problem: 4.06/1.88 4.06/1.88 1: T: 4.06/1.88 4.06/1.88 (Comp: ?, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1, ar_2, ar_3)) 4.06/1.88 4.06/1.88 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_2 ] 4.06/1.88 4.06/1.88 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(1, ar_1 + 1, ar_2, e)) [ ar_1 + 1 = ar_2 /\ ar_0 = 0 ] 4.06/1.88 4.06/1.88 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1 + 1, ar_2 - 1, ar_3)) [ ar_2 >= ar_1 + 2 /\ ar_2 >= ar_1 + 1 /\ ar_0 = 0 ] 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.06/1.88 4.06/1.88 start location: koat_start 4.06/1.88 4.06/1.88 leaf cost: 0 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.06/1.88 4.06/1.88 2: T: 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1, ar_2, ar_3)) 4.06/1.88 4.06/1.88 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_2 ] 4.06/1.88 4.06/1.88 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(1, ar_1 + 1, ar_2, e)) [ ar_1 + 1 = ar_2 /\ ar_0 = 0 ] 4.06/1.88 4.06/1.88 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1 + 1, ar_2 - 1, ar_3)) [ ar_2 >= ar_1 + 2 /\ ar_2 >= ar_1 + 1 /\ ar_0 = 0 ] 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.06/1.88 4.06/1.88 start location: koat_start 4.06/1.88 4.06/1.88 leaf cost: 0 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 A polynomial rank function with 4.06/1.88 4.06/1.88 Pol(f3) = 1 4.06/1.88 4.06/1.88 Pol(f1) = 1 4.06/1.88 4.06/1.88 Pol(f2) = 0 4.06/1.88 4.06/1.88 Pol(koat_start) = 1 4.06/1.88 4.06/1.88 orients all transitions weakly and the transitions 4.06/1.88 4.06/1.88 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(1, ar_1 + 1, ar_2, e)) [ ar_1 + 1 = ar_2 /\ ar_0 = 0 ] 4.06/1.88 4.06/1.88 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_2 ] 4.06/1.88 4.06/1.88 strictly and produces the following problem: 4.06/1.88 4.06/1.88 3: T: 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1, ar_2, ar_3)) 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_2 ] 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(1, ar_1 + 1, ar_2, e)) [ ar_1 + 1 = ar_2 /\ ar_0 = 0 ] 4.06/1.88 4.06/1.88 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1 + 1, ar_2 - 1, ar_3)) [ ar_2 >= ar_1 + 2 /\ ar_2 >= ar_1 + 1 /\ ar_0 = 0 ] 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.06/1.88 4.06/1.88 start location: koat_start 4.06/1.88 4.06/1.88 leaf cost: 0 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 A polynomial rank function with 4.06/1.88 4.06/1.88 Pol(f3) = -V_2 + V_3 4.06/1.88 4.06/1.88 Pol(f1) = -V_2 + V_3 4.06/1.88 4.06/1.88 Pol(f2) = -V_2 + V_3 4.06/1.88 4.06/1.88 Pol(koat_start) = -V_2 + V_3 4.06/1.88 4.06/1.88 orients all transitions weakly and the transition 4.06/1.88 4.06/1.88 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1 + 1, ar_2 - 1, ar_3)) [ ar_2 >= ar_1 + 2 /\ ar_2 >= ar_1 + 1 /\ ar_0 = 0 ] 4.06/1.88 4.06/1.88 strictly and produces the following problem: 4.06/1.88 4.06/1.88 4: T: 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1, ar_2, ar_3)) 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_2 ] 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(1, ar_1 + 1, ar_2, e)) [ ar_1 + 1 = ar_2 /\ ar_0 = 0 ] 4.06/1.88 4.06/1.88 (Comp: ar_1 + ar_2, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1 + 1, ar_2 - 1, ar_3)) [ ar_2 >= ar_1 + 2 /\ ar_2 >= ar_1 + 1 /\ ar_0 = 0 ] 4.06/1.88 4.06/1.88 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.06/1.88 4.06/1.88 start location: koat_start 4.06/1.88 4.06/1.88 leaf cost: 0 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Complexity upper bound ar_1 + ar_2 + 3 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Time: 0.089 sec (SMT: 0.082 sec) 4.06/1.88 4.06/1.88 4.06/1.88 ---------------------------------------- 4.06/1.88 4.06/1.88 (2) 4.06/1.88 BOUNDS(1, n^1) 4.06/1.88 4.06/1.88 ---------------------------------------- 4.06/1.88 4.06/1.88 (3) Loat Proof (FINISHED) 4.06/1.88 4.06/1.88 4.06/1.88 ### Pre-processing the ITS problem ### 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Initial linear ITS problem 4.06/1.88 4.06/1.88 Start location: f3 4.06/1.88 4.06/1.88 0: f3 -> f1 : A'=0, [], cost: 1 4.06/1.88 4.06/1.88 1: f1 -> f2 : D'=free, [ B>=C ], cost: 1 4.06/1.88 4.06/1.88 2: f1 -> f2 : A'=1, B'=1+B, D'=free_1, [ 1+B==C && A==0 ], cost: 1 4.06/1.88 4.06/1.88 3: f1 -> f1 : A'=0, B'=1+B, C'=-1+C, [ C>=2+B && C>=1+B && A==0 ], cost: 1 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Removed unreachable and leaf rules: 4.06/1.88 4.06/1.88 Start location: f3 4.06/1.88 4.06/1.88 0: f3 -> f1 : A'=0, [], cost: 1 4.06/1.88 4.06/1.88 3: f1 -> f1 : A'=0, B'=1+B, C'=-1+C, [ C>=2+B && C>=1+B && A==0 ], cost: 1 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Simplified all rules, resulting in: 4.06/1.88 4.06/1.88 Start location: f3 4.06/1.88 4.06/1.88 0: f3 -> f1 : A'=0, [], cost: 1 4.06/1.88 4.06/1.88 3: f1 -> f1 : A'=0, B'=1+B, C'=-1+C, [ C>=2+B && A==0 ], cost: 1 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 ### Simplification by acceleration and chaining ### 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Accelerating simple loops of location 1. 4.06/1.88 4.06/1.88 Accelerating the following rules: 4.06/1.88 4.06/1.88 3: f1 -> f1 : A'=0, B'=1+B, C'=-1+C, [ C>=2+B && A==0 ], cost: 1 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Accelerated rule 3 with metering function meter (where 2*meter==-1+C-B), yielding the new rule 4. 4.06/1.88 4.06/1.88 Removing the simple loops: 3. 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Accelerated all simple loops using metering functions (where possible): 4.06/1.88 4.06/1.88 Start location: f3 4.06/1.88 4.06/1.88 0: f3 -> f1 : A'=0, [], cost: 1 4.06/1.88 4.06/1.88 4: f1 -> f1 : A'=0, B'=meter+B, C'=C-meter, [ C>=2+B && A==0 && 2*meter==-1+C-B && meter>=1 ], cost: meter 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Chained accelerated rules (with incoming rules): 4.06/1.88 4.06/1.88 Start location: f3 4.06/1.88 4.06/1.88 0: f3 -> f1 : A'=0, [], cost: 1 4.06/1.88 4.06/1.88 5: f3 -> f1 : A'=0, B'=meter+B, C'=C-meter, [ C>=2+B && 2*meter==-1+C-B && meter>=1 ], cost: 1+meter 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Removed unreachable locations (and leaf rules with constant cost): 4.06/1.88 4.06/1.88 Start location: f3 4.06/1.88 4.06/1.88 5: f3 -> f1 : A'=0, B'=meter+B, C'=C-meter, [ C>=2+B && 2*meter==-1+C-B && meter>=1 ], cost: 1+meter 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 ### Computing asymptotic complexity ### 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Fully simplified ITS problem 4.06/1.88 4.06/1.88 Start location: f3 4.06/1.88 4.06/1.88 5: f3 -> f1 : A'=0, B'=meter+B, C'=C-meter, [ C>=2+B && 2*meter==-1+C-B && meter>=1 ], cost: 1+meter 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Computing asymptotic complexity for rule 5 4.06/1.88 4.06/1.88 Solved the limit problem by the following transformations: 4.06/1.88 4.06/1.88 Created initial limit problem: 4.06/1.88 4.06/1.88 C-2*meter-B (+/+!), 2-C+2*meter+B (+/+!), 1+meter (+), -1+C-B (+/+!) [not solved] 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 applying transformation rule (C) using substitution {C==1+2*meter+B} 4.06/1.88 4.06/1.88 resulting limit problem: 4.06/1.88 4.06/1.88 1 (+/+!), 1+meter (+), 2*meter (+/+!) [not solved] 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 applying transformation rule (B), deleting 1 (+/+!) 4.06/1.88 4.06/1.88 resulting limit problem: 4.06/1.88 4.06/1.88 1+meter (+), 2*meter (+/+!) [not solved] 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 removing all constraints (solved by SMT) 4.06/1.88 4.06/1.88 resulting limit problem: [solved] 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 applying transformation rule (C) using substitution {meter==n} 4.06/1.88 4.06/1.88 resulting limit problem: 4.06/1.88 4.06/1.88 [solved] 4.06/1.88 4.06/1.88 4.06/1.88 4.06/1.88 Solved the limit problem by the following transformations: 4.06/1.89 4.06/1.89 Created initial limit problem: 4.06/1.89 4.06/1.89 C-2*meter-B (+/+!), 2-C+2*meter+B (+/+!), 1+meter (+), -1+C-B (+/+!) [not solved] 4.06/1.89 4.06/1.89 4.06/1.89 4.06/1.89 applying transformation rule (C) using substitution {C==1+2*meter+B} 4.06/1.89 4.06/1.89 resulting limit problem: 4.06/1.89 4.06/1.89 1 (+/+!), 1+meter (+), 2*meter (+/+!) [not solved] 4.06/1.89 4.06/1.89 4.06/1.89 4.06/1.89 applying transformation rule (B), deleting 1 (+/+!) 4.06/1.89 4.06/1.89 resulting limit problem: 4.06/1.89 4.06/1.89 1+meter (+), 2*meter (+/+!) [not solved] 4.06/1.89 4.06/1.89 4.06/1.89 4.06/1.89 removing all constraints (solved by SMT) 4.06/1.89 4.06/1.89 resulting limit problem: [solved] 4.06/1.89 4.06/1.89 4.06/1.89 4.06/1.89 applying transformation rule (C) using substitution {meter==n} 4.06/1.89 4.06/1.89 resulting limit problem: 4.06/1.89 4.06/1.89 [solved] 4.06/1.89 4.06/1.89 4.06/1.89 4.06/1.89 Solution: 4.06/1.89 4.06/1.89 C / 1+2*n 4.06/1.89 4.06/1.89 meter / n 4.06/1.89 4.06/1.89 B / 0 4.06/1.89 4.06/1.89 Resulting cost 1+n has complexity: Poly(n^1) 4.06/1.89 4.06/1.89 4.06/1.89 4.06/1.89 Found new complexity Poly(n^1). 4.06/1.89 4.06/1.89 4.06/1.89 4.06/1.89 Obtained the following overall complexity (w.r.t. the length of the input n): 4.06/1.89 4.06/1.89 Complexity: Poly(n^1) 4.06/1.89 4.06/1.89 Cpx degree: 1 4.06/1.89 4.06/1.89 Solved cost: 1+n 4.06/1.89 4.06/1.89 Rule cost: 1+meter 4.06/1.89 4.06/1.89 Rule guard: [ C>=2+B && 2*meter==-1+C-B ] 4.06/1.89 4.06/1.89 4.06/1.89 4.06/1.89 WORST_CASE(Omega(n^1),?) 4.06/1.89 4.06/1.89 4.06/1.89 ---------------------------------------- 4.06/1.89 4.06/1.89 (4) 4.06/1.89 BOUNDS(n^1, INF) 4.14/1.90 EOF