3.72/1.78 WORST_CASE(Omega(n^1), O(n^1)) 3.78/1.79 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.78/1.79 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.78/1.79 3.78/1.79 3.78/1.79 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 3.78/1.79 3.78/1.79 (0) CpxIntTrs 3.78/1.79 (1) Koat Proof [FINISHED, 15 ms] 3.78/1.79 (2) BOUNDS(1, n^1) 3.78/1.79 (3) Loat Proof [FINISHED, 121 ms] 3.78/1.79 (4) BOUNDS(n^1, INF) 3.78/1.79 3.78/1.79 3.78/1.79 ---------------------------------------- 3.78/1.79 3.78/1.79 (0) 3.78/1.79 Obligation: 3.78/1.79 Complexity Int TRS consisting of the following rules: 3.78/1.79 f2(A, B) -> Com_1(f2(-(1) + A, B)) :|: A >= 2 3.78/1.79 f2(A, B) -> Com_1(f1(-(1) + A, C)) :|: 1 >= A 3.78/1.79 f300(A, B) -> Com_1(f2(A, B)) :|: TRUE 3.78/1.79 3.78/1.79 The start-symbols are:[f300_2] 3.78/1.79 3.78/1.79 3.78/1.79 ---------------------------------------- 3.78/1.79 3.78/1.79 (1) Koat Proof (FINISHED) 3.78/1.79 YES(?, ar_0 + 2) 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Initial complexity problem: 3.78/1.79 3.78/1.79 1: T: 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f2(ar_0, ar_1) -> Com_1(f2(ar_0 - 1, ar_1)) [ ar_0 >= 2 ] 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f2(ar_0, ar_1) -> Com_1(f1(ar_0 - 1, c)) [ 1 >= ar_0 ] 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f300(ar_0, ar_1) -> Com_1(f2(ar_0, ar_1)) 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(f300(ar_0, ar_1)) [ 0 <= 0 ] 3.78/1.79 3.78/1.79 start location: koat_start 3.78/1.79 3.78/1.79 leaf cost: 0 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.78/1.79 3.78/1.79 2: T: 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f2(ar_0, ar_1) -> Com_1(f2(ar_0 - 1, ar_1)) [ ar_0 >= 2 ] 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f2(ar_0, ar_1) -> Com_1(f1(ar_0 - 1, c)) [ 1 >= ar_0 ] 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 1) f300(ar_0, ar_1) -> Com_1(f2(ar_0, ar_1)) 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(f300(ar_0, ar_1)) [ 0 <= 0 ] 3.78/1.79 3.78/1.79 start location: koat_start 3.78/1.79 3.78/1.79 leaf cost: 0 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 A polynomial rank function with 3.78/1.79 3.78/1.79 Pol(f2) = 1 3.78/1.79 3.78/1.79 Pol(f1) = 0 3.78/1.79 3.78/1.79 Pol(f300) = 1 3.78/1.79 3.78/1.79 Pol(koat_start) = 1 3.78/1.79 3.78/1.79 orients all transitions weakly and the transition 3.78/1.79 3.78/1.79 f2(ar_0, ar_1) -> Com_1(f1(ar_0 - 1, c)) [ 1 >= ar_0 ] 3.78/1.79 3.78/1.79 strictly and produces the following problem: 3.78/1.79 3.78/1.79 3: T: 3.78/1.79 3.78/1.79 (Comp: ?, Cost: 1) f2(ar_0, ar_1) -> Com_1(f2(ar_0 - 1, ar_1)) [ ar_0 >= 2 ] 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 1) f2(ar_0, ar_1) -> Com_1(f1(ar_0 - 1, c)) [ 1 >= ar_0 ] 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 1) f300(ar_0, ar_1) -> Com_1(f2(ar_0, ar_1)) 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(f300(ar_0, ar_1)) [ 0 <= 0 ] 3.78/1.79 3.78/1.79 start location: koat_start 3.78/1.79 3.78/1.79 leaf cost: 0 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 A polynomial rank function with 3.78/1.79 3.78/1.79 Pol(f2) = V_1 3.78/1.79 3.78/1.79 Pol(f1) = V_1 3.78/1.79 3.78/1.79 Pol(f300) = V_1 3.78/1.79 3.78/1.79 Pol(koat_start) = V_1 3.78/1.79 3.78/1.79 orients all transitions weakly and the transition 3.78/1.79 3.78/1.79 f2(ar_0, ar_1) -> Com_1(f2(ar_0 - 1, ar_1)) [ ar_0 >= 2 ] 3.78/1.79 3.78/1.79 strictly and produces the following problem: 3.78/1.79 3.78/1.79 4: T: 3.78/1.79 3.78/1.79 (Comp: ar_0, Cost: 1) f2(ar_0, ar_1) -> Com_1(f2(ar_0 - 1, ar_1)) [ ar_0 >= 2 ] 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 1) f2(ar_0, ar_1) -> Com_1(f1(ar_0 - 1, c)) [ 1 >= ar_0 ] 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 1) f300(ar_0, ar_1) -> Com_1(f2(ar_0, ar_1)) 3.78/1.79 3.78/1.79 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(f300(ar_0, ar_1)) [ 0 <= 0 ] 3.78/1.79 3.78/1.79 start location: koat_start 3.78/1.79 3.78/1.79 leaf cost: 0 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Complexity upper bound ar_0 + 2 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Time: 0.041 sec (SMT: 0.039 sec) 3.78/1.79 3.78/1.79 3.78/1.79 ---------------------------------------- 3.78/1.79 3.78/1.79 (2) 3.78/1.79 BOUNDS(1, n^1) 3.78/1.79 3.78/1.79 ---------------------------------------- 3.78/1.79 3.78/1.79 (3) Loat Proof (FINISHED) 3.78/1.79 3.78/1.79 3.78/1.79 ### Pre-processing the ITS problem ### 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Initial linear ITS problem 3.78/1.79 3.78/1.79 Start location: f300 3.78/1.79 3.78/1.79 0: f2 -> f2 : A'=-1+A, [ A>=2 ], cost: 1 3.78/1.79 3.78/1.79 1: f2 -> f1 : A'=-1+A, B'=free, [ 1>=A ], cost: 1 3.78/1.79 3.78/1.79 2: f300 -> f2 : [], cost: 1 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Removed unreachable and leaf rules: 3.78/1.79 3.78/1.79 Start location: f300 3.78/1.79 3.78/1.79 0: f2 -> f2 : A'=-1+A, [ A>=2 ], cost: 1 3.78/1.79 3.78/1.79 2: f300 -> f2 : [], cost: 1 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 ### Simplification by acceleration and chaining ### 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Accelerating simple loops of location 0. 3.78/1.79 3.78/1.79 Accelerating the following rules: 3.78/1.79 3.78/1.79 0: f2 -> f2 : A'=-1+A, [ A>=2 ], cost: 1 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Accelerated rule 0 with metering function -1+A, yielding the new rule 3. 3.78/1.79 3.78/1.79 Removing the simple loops: 0. 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Accelerated all simple loops using metering functions (where possible): 3.78/1.79 3.78/1.79 Start location: f300 3.78/1.79 3.78/1.79 3: f2 -> f2 : A'=1, [ A>=2 ], cost: -1+A 3.78/1.79 3.78/1.79 2: f300 -> f2 : [], cost: 1 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Chained accelerated rules (with incoming rules): 3.78/1.79 3.78/1.79 Start location: f300 3.78/1.79 3.78/1.79 2: f300 -> f2 : [], cost: 1 3.78/1.79 3.78/1.79 4: f300 -> f2 : A'=1, [ A>=2 ], cost: A 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Removed unreachable locations (and leaf rules with constant cost): 3.78/1.79 3.78/1.79 Start location: f300 3.78/1.79 3.78/1.79 4: f300 -> f2 : A'=1, [ A>=2 ], cost: A 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 ### Computing asymptotic complexity ### 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Fully simplified ITS problem 3.78/1.79 3.78/1.79 Start location: f300 3.78/1.79 3.78/1.79 4: f300 -> f2 : A'=1, [ A>=2 ], cost: A 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Computing asymptotic complexity for rule 4 3.78/1.79 3.78/1.79 Solved the limit problem by the following transformations: 3.78/1.79 3.78/1.79 Created initial limit problem: 3.78/1.79 3.78/1.79 -1+A (+/+!), A (+) [not solved] 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 removing all constraints (solved by SMT) 3.78/1.79 3.78/1.79 resulting limit problem: [solved] 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 applying transformation rule (C) using substitution {A==n} 3.78/1.79 3.78/1.79 resulting limit problem: 3.78/1.79 3.78/1.79 [solved] 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Solution: 3.78/1.79 3.78/1.79 A / n 3.78/1.79 3.78/1.79 Resulting cost n has complexity: Poly(n^1) 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Found new complexity Poly(n^1). 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 Obtained the following overall complexity (w.r.t. the length of the input n): 3.78/1.79 3.78/1.79 Complexity: Poly(n^1) 3.78/1.79 3.78/1.79 Cpx degree: 1 3.78/1.79 3.78/1.79 Solved cost: n 3.78/1.79 3.78/1.79 Rule cost: A 3.78/1.79 3.78/1.79 Rule guard: [ A>=2 ] 3.78/1.79 3.78/1.79 3.78/1.79 3.78/1.79 WORST_CASE(Omega(n^1),?) 3.78/1.79 3.78/1.79 3.78/1.79 ---------------------------------------- 3.78/1.79 3.78/1.79 (4) 3.78/1.79 BOUNDS(n^1, INF) 3.78/1.81 EOF