3.30/1.66 WORST_CASE(?, O(1)) 3.30/1.67 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.30/1.67 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.30/1.67 3.30/1.67 3.30/1.67 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.30/1.67 3.30/1.67 (0) CpxIntTrs 3.30/1.67 (1) Koat Proof [FINISHED, 8 ms] 3.30/1.67 (2) BOUNDS(1, 1) 3.30/1.67 3.30/1.67 3.30/1.67 ---------------------------------------- 3.30/1.67 3.30/1.67 (0) 3.30/1.67 Obligation: 3.30/1.67 Complexity Int TRS consisting of the following rules: 3.30/1.67 f0(A, B, C, D) -> Com_1(f4(A, E, C, D)) :|: A >= 10 3.30/1.67 f0(A, B, C, D) -> Com_1(f0(1 + A, B, A, D)) :|: 9 >= A 3.30/1.67 f1(A, B, C, D) -> Com_1(f0(1, B, C, D)) :|: 9 >= E && A >= 0 && A <= 0 3.30/1.67 f2(A, B, C, D) -> Com_1(f0(2, B, C, 2)) :|: 9 >= A 3.30/1.67 f3(A, B, C, D) -> Com_1(f0(0, B, C, D)) :|: TRUE 3.30/1.67 3.30/1.67 The start-symbols are:[f3_4] 3.30/1.67 3.30/1.67 3.30/1.67 ---------------------------------------- 3.30/1.67 3.30/1.67 (1) Koat Proof (FINISHED) 3.30/1.67 YES(?, 12) 3.30/1.67 3.30/1.67 3.30/1.67 3.30/1.67 Initial complexity problem: 3.30/1.67 3.30/1.67 1: T: 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f4(ar_0, e, ar_2, ar_3)) [ ar_0 >= 10 ] 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0 + 1, ar_1, ar_0, ar_3)) [ 9 >= ar_0 ] 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(1, ar_1, ar_2, ar_3)) [ 9 >= e /\ ar_0 = 0 ] 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(2, ar_1, ar_2, 2)) [ 9 >= ar_0 ] 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(0, ar_1, ar_2, ar_3)) 3.30/1.67 3.30/1.67 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.30/1.67 3.30/1.67 start location: koat_start 3.30/1.67 3.30/1.67 leaf cost: 0 3.30/1.67 3.30/1.67 3.30/1.67 3.30/1.67 Testing for reachability in the complexity graph removes the following transitions from problem 1: 3.30/1.67 3.30/1.67 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(1, ar_1, ar_2, ar_3)) [ 9 >= e /\ ar_0 = 0 ] 3.30/1.67 3.30/1.67 f2(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(2, ar_1, ar_2, 2)) [ 9 >= ar_0 ] 3.30/1.67 3.30/1.67 We thus obtain the following problem: 3.30/1.67 3.30/1.67 2: T: 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f4(ar_0, e, ar_2, ar_3)) [ ar_0 >= 10 ] 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0 + 1, ar_1, ar_0, ar_3)) [ 9 >= ar_0 ] 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(0, ar_1, ar_2, ar_3)) 3.30/1.67 3.30/1.67 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.30/1.67 3.30/1.67 start location: koat_start 3.30/1.67 3.30/1.67 leaf cost: 0 3.30/1.67 3.30/1.67 3.30/1.67 3.30/1.67 Repeatedly propagating knowledge in problem 2 produces the following problem: 3.30/1.67 3.30/1.67 3: T: 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f4(ar_0, e, ar_2, ar_3)) [ ar_0 >= 10 ] 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0 + 1, ar_1, ar_0, ar_3)) [ 9 >= ar_0 ] 3.30/1.67 3.30/1.67 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(0, ar_1, ar_2, ar_3)) 3.30/1.67 3.30/1.67 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.30/1.67 3.30/1.67 start location: koat_start 3.30/1.67 3.30/1.67 leaf cost: 0 3.30/1.67 3.30/1.67 3.30/1.67 3.30/1.67 A polynomial rank function with 3.30/1.67 3.30/1.67 Pol(f0) = 1 3.30/1.67 3.30/1.67 Pol(f4) = 0 3.30/1.67 3.30/1.67 Pol(f3) = 1 3.30/1.67 3.30/1.67 Pol(koat_start) = 1 3.30/1.67 3.30/1.67 orients all transitions weakly and the transition 3.30/1.67 3.30/1.67 f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f4(ar_0, e, ar_2, ar_3)) [ ar_0 >= 10 ] 3.30/1.67 3.30/1.67 strictly and produces the following problem: 3.30/1.67 3.30/1.67 4: T: 3.30/1.67 3.30/1.67 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f4(ar_0, e, ar_2, ar_3)) [ ar_0 >= 10 ] 3.30/1.67 3.30/1.67 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0 + 1, ar_1, ar_0, ar_3)) [ 9 >= ar_0 ] 3.30/1.67 3.30/1.67 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(0, ar_1, ar_2, ar_3)) 3.30/1.67 3.30/1.67 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.30/1.67 3.30/1.67 start location: koat_start 3.30/1.67 3.30/1.67 leaf cost: 0 3.30/1.67 3.30/1.67 3.30/1.67 3.30/1.67 A polynomial rank function with 3.30/1.67 3.30/1.67 Pol(f0) = -V_1 + 10 3.30/1.67 3.30/1.67 Pol(f4) = -V_1 3.30/1.67 3.30/1.67 Pol(f3) = 10 3.30/1.67 3.30/1.67 Pol(koat_start) = 10 3.30/1.67 3.30/1.67 orients all transitions weakly and the transition 3.30/1.67 3.30/1.67 f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0 + 1, ar_1, ar_0, ar_3)) [ 9 >= ar_0 ] 3.30/1.67 3.30/1.67 strictly and produces the following problem: 3.30/1.67 3.30/1.67 5: T: 3.30/1.67 3.30/1.67 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f4(ar_0, e, ar_2, ar_3)) [ ar_0 >= 10 ] 3.30/1.67 3.30/1.67 (Comp: 10, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0 + 1, ar_1, ar_0, ar_3)) [ 9 >= ar_0 ] 3.30/1.67 3.30/1.67 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(0, ar_1, ar_2, ar_3)) 3.30/1.67 3.30/1.67 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 3.30/1.67 3.30/1.67 start location: koat_start 3.30/1.67 3.30/1.67 leaf cost: 0 3.30/1.67 3.30/1.67 3.30/1.67 3.30/1.67 Complexity upper bound 12 3.30/1.67 3.30/1.67 3.30/1.67 3.30/1.67 Time: 0.057 sec (SMT: 0.052 sec) 3.30/1.67 3.30/1.67 3.30/1.67 ---------------------------------------- 3.30/1.67 3.30/1.67 (2) 3.30/1.67 BOUNDS(1, 1) 3.57/1.70 EOF