3.96/1.94 WORST_CASE(Omega(n^1), O(n^1)) 4.15/1.95 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.15/1.95 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.15/1.95 4.15/1.95 4.15/1.95 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.15/1.95 4.15/1.95 (0) CpxIntTrs 4.15/1.95 (1) Koat Proof [FINISHED, 120 ms] 4.15/1.95 (2) BOUNDS(1, n^1) 4.15/1.95 (3) Loat Proof [FINISHED, 325 ms] 4.15/1.95 (4) BOUNDS(n^1, INF) 4.15/1.95 4.15/1.95 4.15/1.95 ---------------------------------------- 4.15/1.95 4.15/1.95 (0) 4.15/1.95 Obligation: 4.15/1.95 Complexity Int TRS consisting of the following rules: 4.15/1.95 f0(A, B, C, D) -> Com_1(f6(0, 0, C, D)) :|: TRUE 4.15/1.95 f6(A, B, C, D) -> Com_1(f6(A, B + 1, C, D)) :|: C >= B + 1 4.15/1.95 f6(A, B, C, D) -> Com_1(f6(A + 2, B + 1, C, D)) :|: C >= B + 1 4.15/1.95 f15(A, B, C, D) -> Com_1(f19(C + 1, B, C, 1)) :|: A >= C + 1 && A <= C + 1 4.15/1.95 f15(A, B, C, D) -> Com_1(f19(A, B, C, 0)) :|: C >= A 4.15/1.95 f15(A, B, C, D) -> Com_1(f19(A, B, C, 0)) :|: A >= 2 + C 4.15/1.95 f6(A, B, C, D) -> Com_1(f15(A, B, C, D)) :|: B >= C && C >= A + 1 4.15/1.95 f6(A, B, C, D) -> Com_1(f15(A, B, C, D)) :|: A >= 1 + C && B >= C 4.15/1.95 f6(A, B, C, D) -> Com_1(f19(A, B, A, 1)) :|: B >= C && A >= C && A <= C 4.15/1.95 4.15/1.95 The start-symbols are:[f0_4] 4.15/1.95 4.15/1.95 4.15/1.95 ---------------------------------------- 4.15/1.95 4.15/1.95 (1) Koat Proof (FINISHED) 4.15/1.95 YES(?, 2*ar_2 + 13) 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Initial complexity problem: 4.15/1.95 4.15/1.95 1: T: 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3) -> Com_1(f6(0, 0, ar_2, ar_3)) 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2, ar_3) -> Com_1(f6(ar_0, ar_1 + 1, ar_2, ar_3)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2, ar_3) -> Com_1(f6(ar_0 + 2, ar_1 + 1, ar_2, ar_3)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f15(ar_0, ar_1, ar_2, ar_3) -> Com_1(f19(ar_2 + 1, ar_1, ar_2, 1)) [ ar_0 = ar_2 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f15(ar_0, ar_1, ar_2, ar_3) -> Com_1(f19(ar_0, ar_1, ar_2, 0)) [ ar_2 >= ar_0 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f15(ar_0, ar_1, ar_2, ar_3) -> Com_1(f19(ar_0, ar_1, ar_2, 0)) [ ar_0 >= ar_2 + 2 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2, ar_3) -> Com_1(f15(ar_0, ar_1, ar_2, ar_3)) [ ar_1 >= ar_2 /\ ar_2 >= ar_0 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2, ar_3) -> Com_1(f15(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 + 1 /\ ar_1 >= ar_2 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2, ar_3) -> Com_1(f19(ar_0, ar_1, ar_0, 1)) [ ar_1 >= ar_2 /\ ar_0 = ar_2 ] 4.15/1.95 4.15/1.95 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.15/1.95 4.15/1.95 start location: koat_start 4.15/1.95 4.15/1.95 leaf cost: 0 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [ar_0, ar_1, ar_2]. 4.15/1.95 4.15/1.95 We thus obtain the following problem: 4.15/1.95 4.15/1.95 2: T: 4.15/1.95 4.15/1.95 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_0)) [ ar_1 >= ar_2 /\ ar_0 = ar_2 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f15(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 /\ ar_1 >= ar_2 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f15(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 /\ ar_2 >= ar_0 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 2 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_2 + 1, ar_1, ar_2)) [ ar_0 = ar_2 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0 + 2, ar_1 + 1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1 + 1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f6(0, 0, ar_2)) 4.15/1.95 4.15/1.95 start location: koat_start 4.15/1.95 4.15/1.95 leaf cost: 0 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Repeatedly propagating knowledge in problem 2 produces the following problem: 4.15/1.95 4.15/1.95 3: T: 4.15/1.95 4.15/1.95 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_0)) [ ar_1 >= ar_2 /\ ar_0 = ar_2 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f15(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 /\ ar_1 >= ar_2 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f15(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 /\ ar_2 >= ar_0 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 2 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_2 + 1, ar_1, ar_2)) [ ar_0 = ar_2 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0 + 2, ar_1 + 1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1 + 1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f6(0, 0, ar_2)) 4.15/1.95 4.15/1.95 start location: koat_start 4.15/1.95 4.15/1.95 leaf cost: 0 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 A polynomial rank function with 4.15/1.95 4.15/1.95 Pol(koat_start) = 2 4.15/1.95 4.15/1.95 Pol(f0) = 2 4.15/1.95 4.15/1.95 Pol(f6) = 2 4.15/1.95 4.15/1.95 Pol(f19) = 0 4.15/1.95 4.15/1.95 Pol(f15) = 1 4.15/1.95 4.15/1.95 orients all transitions weakly and the transitions 4.15/1.95 4.15/1.95 f6(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_0)) [ ar_1 >= ar_2 /\ ar_0 = ar_2 ] 4.15/1.95 4.15/1.95 f6(ar_0, ar_1, ar_2) -> Com_1(f15(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 /\ ar_2 >= ar_0 + 1 ] 4.15/1.95 4.15/1.95 f6(ar_0, ar_1, ar_2) -> Com_1(f15(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 /\ ar_1 >= ar_2 ] 4.15/1.95 4.15/1.95 f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_2 + 1, ar_1, ar_2)) [ ar_0 = ar_2 + 1 ] 4.15/1.95 4.15/1.95 f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.15/1.95 4.15/1.95 f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 2 ] 4.15/1.95 4.15/1.95 strictly and produces the following problem: 4.15/1.95 4.15/1.95 4: T: 4.15/1.95 4.15/1.95 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_0)) [ ar_1 >= ar_2 /\ ar_0 = ar_2 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f15(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 /\ ar_1 >= ar_2 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f15(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 /\ ar_2 >= ar_0 + 1 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 2 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_2 + 1, ar_1, ar_2)) [ ar_0 = ar_2 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0 + 2, ar_1 + 1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ?, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1 + 1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f6(0, 0, ar_2)) 4.15/1.95 4.15/1.95 start location: koat_start 4.15/1.95 4.15/1.95 leaf cost: 0 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 A polynomial rank function with 4.15/1.95 4.15/1.95 Pol(koat_start) = V_3 4.15/1.95 4.15/1.95 Pol(f0) = V_3 4.15/1.95 4.15/1.95 Pol(f6) = -V_2 + V_3 4.15/1.95 4.15/1.95 Pol(f19) = -V_2 + V_3 4.15/1.95 4.15/1.95 Pol(f15) = -V_2 + V_3 4.15/1.95 4.15/1.95 orients all transitions weakly and the transitions 4.15/1.95 4.15/1.95 f6(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0 + 2, ar_1 + 1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 f6(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1 + 1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 strictly and produces the following problem: 4.15/1.95 4.15/1.95 5: T: 4.15/1.95 4.15/1.95 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_0)) [ ar_1 >= ar_2 /\ ar_0 = ar_2 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f15(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 1 /\ ar_1 >= ar_2 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f15(ar_0, ar_1, ar_2)) [ ar_1 >= ar_2 /\ ar_2 >= ar_0 + 1 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 + 2 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 ] 4.15/1.95 4.15/1.95 (Comp: 2, Cost: 1) f15(ar_0, ar_1, ar_2) -> Com_1(f19(ar_2 + 1, ar_1, ar_2)) [ ar_0 = ar_2 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ar_2, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0 + 2, ar_1 + 1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 (Comp: ar_2, Cost: 1) f6(ar_0, ar_1, ar_2) -> Com_1(f6(ar_0, ar_1 + 1, ar_2)) [ ar_2 >= ar_1 + 1 ] 4.15/1.95 4.15/1.95 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f6(0, 0, ar_2)) 4.15/1.95 4.15/1.95 start location: koat_start 4.15/1.95 4.15/1.95 leaf cost: 0 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Complexity upper bound 2*ar_2 + 13 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Time: 0.116 sec (SMT: 0.106 sec) 4.15/1.95 4.15/1.95 4.15/1.95 ---------------------------------------- 4.15/1.95 4.15/1.95 (2) 4.15/1.95 BOUNDS(1, n^1) 4.15/1.95 4.15/1.95 ---------------------------------------- 4.15/1.95 4.15/1.95 (3) Loat Proof (FINISHED) 4.15/1.95 4.15/1.95 4.15/1.95 ### Pre-processing the ITS problem ### 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Initial linear ITS problem 4.15/1.95 4.15/1.95 Start location: f0 4.15/1.95 4.15/1.95 0: f0 -> f6 : A'=0, B'=0, [], cost: 1 4.15/1.95 4.15/1.95 1: f6 -> f6 : B'=1+B, [ C>=1+B ], cost: 1 4.15/1.95 4.15/1.95 2: f6 -> f6 : A'=2+A, B'=1+B, [ C>=1+B ], cost: 1 4.15/1.95 4.15/1.95 6: f6 -> f15 : [ B>=C && C>=1+A ], cost: 1 4.15/1.95 4.15/1.95 7: f6 -> f15 : [ A>=1+C && B>=C ], cost: 1 4.15/1.95 4.15/1.95 8: f6 -> f19 : C'=A, D'=1, [ B>=C && A==C ], cost: 1 4.15/1.95 4.15/1.95 3: f15 -> f19 : A'=1+C, D'=1, [ A==1+C ], cost: 1 4.15/1.95 4.15/1.95 4: f15 -> f19 : D'=0, [ C>=A ], cost: 1 4.15/1.95 4.15/1.95 5: f15 -> f19 : D'=0, [ A>=2+C ], cost: 1 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Removed unreachable and leaf rules: 4.15/1.95 4.15/1.95 Start location: f0 4.15/1.95 4.15/1.95 0: f0 -> f6 : A'=0, B'=0, [], cost: 1 4.15/1.95 4.15/1.95 1: f6 -> f6 : B'=1+B, [ C>=1+B ], cost: 1 4.15/1.95 4.15/1.95 2: f6 -> f6 : A'=2+A, B'=1+B, [ C>=1+B ], cost: 1 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 ### Simplification by acceleration and chaining ### 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Accelerating simple loops of location 1. 4.15/1.95 4.15/1.95 Accelerating the following rules: 4.15/1.95 4.15/1.95 1: f6 -> f6 : B'=1+B, [ C>=1+B ], cost: 1 4.15/1.95 4.15/1.95 2: f6 -> f6 : A'=2+A, B'=1+B, [ C>=1+B ], cost: 1 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Accelerated rule 1 with metering function C-B, yielding the new rule 9. 4.15/1.95 4.15/1.95 Accelerated rule 2 with metering function C-B, yielding the new rule 10. 4.15/1.95 4.15/1.95 Removing the simple loops: 1 2. 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Accelerated all simple loops using metering functions (where possible): 4.15/1.95 4.15/1.95 Start location: f0 4.15/1.95 4.15/1.95 0: f0 -> f6 : A'=0, B'=0, [], cost: 1 4.15/1.95 4.15/1.95 9: f6 -> f6 : B'=C, [ C>=1+B ], cost: C-B 4.15/1.95 4.15/1.95 10: f6 -> f6 : A'=2*C+A-2*B, B'=C, [ C>=1+B ], cost: C-B 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Chained accelerated rules (with incoming rules): 4.15/1.95 4.15/1.95 Start location: f0 4.15/1.95 4.15/1.95 0: f0 -> f6 : A'=0, B'=0, [], cost: 1 4.15/1.95 4.15/1.95 11: f0 -> f6 : A'=0, B'=C, [ C>=1 ], cost: 1+C 4.15/1.95 4.15/1.95 12: f0 -> f6 : A'=2*C, B'=C, [ C>=1 ], cost: 1+C 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Removed unreachable locations (and leaf rules with constant cost): 4.15/1.95 4.15/1.95 Start location: f0 4.15/1.95 4.15/1.95 11: f0 -> f6 : A'=0, B'=C, [ C>=1 ], cost: 1+C 4.15/1.95 4.15/1.95 12: f0 -> f6 : A'=2*C, B'=C, [ C>=1 ], cost: 1+C 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 ### Computing asymptotic complexity ### 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Fully simplified ITS problem 4.15/1.95 4.15/1.95 Start location: f0 4.15/1.95 4.15/1.95 12: f0 -> f6 : A'=2*C, B'=C, [ C>=1 ], cost: 1+C 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Computing asymptotic complexity for rule 12 4.15/1.95 4.15/1.95 Solved the limit problem by the following transformations: 4.15/1.95 4.15/1.95 Created initial limit problem: 4.15/1.95 4.15/1.95 1+C (+), C (+/+!) [not solved] 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 removing all constraints (solved by SMT) 4.15/1.95 4.15/1.95 resulting limit problem: [solved] 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 applying transformation rule (C) using substitution {C==n} 4.15/1.95 4.15/1.95 resulting limit problem: 4.15/1.95 4.15/1.95 [solved] 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Solution: 4.15/1.95 4.15/1.95 C / n 4.15/1.95 4.15/1.95 Resulting cost 1+n has complexity: Poly(n^1) 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Found new complexity Poly(n^1). 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 Obtained the following overall complexity (w.r.t. the length of the input n): 4.15/1.95 4.15/1.95 Complexity: Poly(n^1) 4.15/1.95 4.15/1.95 Cpx degree: 1 4.15/1.95 4.15/1.95 Solved cost: 1+n 4.15/1.95 4.15/1.95 Rule cost: 1+C 4.15/1.95 4.15/1.95 Rule guard: [ C>=1 ] 4.15/1.95 4.15/1.95 4.15/1.95 4.15/1.95 WORST_CASE(Omega(n^1),?) 4.15/1.95 4.15/1.95 4.15/1.95 ---------------------------------------- 4.15/1.95 4.15/1.95 (4) 4.15/1.95 BOUNDS(n^1, INF) 4.15/1.97 EOF