3.23/1.65 WORST_CASE(?, O(1)) 3.23/1.66 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.23/1.66 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.23/1.66 3.23/1.66 3.23/1.66 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.23/1.66 3.23/1.66 (0) CpxIntTrs 3.23/1.66 (1) Koat Proof [FINISHED, 19 ms] 3.23/1.66 (2) BOUNDS(1, 1) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (0) 3.23/1.66 Obligation: 3.23/1.66 Complexity Int TRS consisting of the following rules: 3.23/1.66 f0(A, B, C) -> Com_1(f1(A, B, 2)) :|: A >= 0 && 3 >= A && 3 >= B && B >= 0 3.23/1.66 f1(A, B, C) -> Com_1(f1(A, B + 1, C)) :|: C + A >= 2 * B + 1 3.23/1.66 f1(A, B, C) -> Com_1(f1(A, B - 1, C)) :|: 2 * B >= 2 + C + A 3.23/1.66 3.23/1.66 The start-symbols are:[f0_3] 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (1) Koat Proof (FINISHED) 3.23/1.66 YES(?, 23) 3.23/1.66 3.23/1.66 3.23/1.66 3.23/1.66 Initial complexity problem: 3.23/1.66 3.23/1.66 1: T: 3.23/1.66 3.23/1.66 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, 2)) [ ar_0 >= 0 /\ 3 >= ar_0 /\ 3 >= ar_1 /\ ar_1 >= 0 ] 3.23/1.66 3.23/1.66 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.23/1.66 3.23/1.66 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.23/1.66 3.23/1.66 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.23/1.66 3.23/1.66 start location: koat_start 3.23/1.66 3.23/1.66 leaf cost: 0 3.23/1.66 3.23/1.66 3.23/1.66 3.23/1.66 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.23/1.66 3.23/1.66 2: T: 3.23/1.66 3.23/1.66 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, 2)) [ ar_0 >= 0 /\ 3 >= ar_0 /\ 3 >= ar_1 /\ ar_1 >= 0 ] 3.23/1.66 3.23/1.66 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.23/1.66 3.23/1.66 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.23/1.66 3.23/1.66 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.23/1.66 3.23/1.66 start location: koat_start 3.23/1.66 3.23/1.66 leaf cost: 0 3.23/1.66 3.23/1.66 3.23/1.66 3.23/1.66 A polynomial rank function with 3.23/1.66 3.23/1.66 Pol(f1) = -V_1 + 2*V_2 - V_3 3.23/1.66 3.23/1.66 and size complexities 3.23/1.66 3.23/1.66 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 3.23/1.66 3.23/1.66 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 3.23/1.66 3.23/1.66 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-0) = 3 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-1) = ? 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-2) = 2 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-0) = 3 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-1) = ? 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-2) = 2 3.23/1.66 3.23/1.66 S("f0(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, 2)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-0) = 3 3.23/1.66 3.23/1.66 S("f0(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, 2)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-1) = 3 3.23/1.66 3.23/1.66 S("f0(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, 2)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-2) = 2 3.23/1.66 3.23/1.66 orients the transitions 3.23/1.66 3.23/1.66 f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.23/1.66 3.23/1.66 weakly and the transition 3.23/1.66 3.23/1.66 f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.23/1.66 3.23/1.66 strictly and produces the following problem: 3.23/1.66 3.23/1.66 3: T: 3.23/1.66 3.23/1.66 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, 2)) [ ar_0 >= 0 /\ 3 >= ar_0 /\ 3 >= ar_1 /\ ar_1 >= 0 ] 3.23/1.66 3.23/1.66 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.23/1.66 3.23/1.66 (Comp: 11, Cost: 1) f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.23/1.66 3.23/1.66 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.23/1.66 3.23/1.66 start location: koat_start 3.23/1.66 3.23/1.66 leaf cost: 0 3.23/1.66 3.23/1.66 3.23/1.66 3.23/1.66 A polynomial rank function with 3.23/1.66 3.23/1.66 Pol(f1) = V_1 - 2*V_2 + V_3 3.23/1.66 3.23/1.66 and size complexities 3.23/1.66 3.23/1.66 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 3.23/1.66 3.23/1.66 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 3.23/1.66 3.23/1.66 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-0) = 3 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-1) = 14 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ]", 0-2) = 2 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-0) = 3 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-1) = ? 3.23/1.66 3.23/1.66 S("f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ]", 0-2) = 2 3.23/1.66 3.23/1.66 S("f0(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, 2)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-0) = 3 3.23/1.66 3.23/1.66 S("f0(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, 2)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-1) = 3 3.23/1.66 3.23/1.66 S("f0(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, 2)) [ ar_0 >= 0 /\\ 3 >= ar_0 /\\ 3 >= ar_1 /\\ ar_1 >= 0 ]", 0-2) = 2 3.23/1.66 3.23/1.66 orients the transitions 3.23/1.66 3.23/1.66 f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.23/1.66 3.23/1.66 weakly and the transition 3.23/1.66 3.23/1.66 f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.23/1.66 3.23/1.66 strictly and produces the following problem: 3.23/1.66 3.23/1.66 4: T: 3.23/1.66 3.23/1.66 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1, 2)) [ ar_0 >= 0 /\ 3 >= ar_0 /\ 3 >= ar_1 /\ ar_1 >= 0 ] 3.23/1.66 3.23/1.66 (Comp: 11, Cost: 1) f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 + 1, ar_2)) [ ar_2 + ar_0 >= 2*ar_1 + 1 ] 3.23/1.66 3.23/1.66 (Comp: 11, Cost: 1) f1(ar_0, ar_1, ar_2) -> Com_1(f1(ar_0, ar_1 - 1, ar_2)) [ 2*ar_1 >= ar_2 + ar_0 + 2 ] 3.23/1.66 3.23/1.66 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(f0(ar_0, ar_1, ar_2)) [ 0 <= 0 ] 3.23/1.66 3.23/1.66 start location: koat_start 3.23/1.66 3.23/1.66 leaf cost: 0 3.23/1.66 3.23/1.66 3.23/1.66 3.23/1.66 Complexity upper bound 23 3.23/1.66 3.23/1.66 3.23/1.66 3.23/1.66 Time: 0.077 sec (SMT: 0.071 sec) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (2) 3.23/1.66 BOUNDS(1, 1) 3.23/1.68 EOF