4.38/2.03 WORST_CASE(NON_POLY, ?) 4.38/2.03 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.38/2.03 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.38/2.03 4.38/2.03 4.38/2.03 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). 4.38/2.03 4.38/2.03 (0) CpxIntTrs 4.38/2.03 (1) Loat Proof [FINISHED, 311 ms] 4.38/2.03 (2) BOUNDS(INF, INF) 4.38/2.03 4.38/2.03 4.38/2.03 ---------------------------------------- 4.38/2.03 4.38/2.03 (0) 4.38/2.03 Obligation: 4.38/2.03 Complexity Int TRS consisting of the following rules: 4.38/2.03 f0(A, B, C, D, E, F, G) -> Com_1(f2(A, B, C, D, E, F, G)) :|: 0 >= A 4.38/2.03 f0(A, B, C, D, E, F, G) -> Com_1(f0(-(1) + A, C, -(1) + C, A, E, F, G)) :|: A >= 1 4.38/2.03 f1(A, B, C, D, E, F, G) -> Com_1(f0(-(1) + A, B, -(1) + C, D, C, A, G)) :|: A >= 1 && C >= 1 4.38/2.03 f2(A, B, C, D, E, F, G) -> Com_1(f4(A, B, C, D, E, F, H)) :|: 0 >= C 4.38/2.03 f2(A, B, C, D, E, F, G) -> Com_1(f0(H, B, C, D, E, F, G)) :|: H >= 1 && C >= 1 4.38/2.03 f3(A, B, C, D, E, F, G) -> Com_1(f2(H, B, I, D, E, F, G)) :|: TRUE 4.38/2.03 4.38/2.03 The start-symbols are:[f3_7] 4.38/2.03 4.38/2.03 4.38/2.03 ---------------------------------------- 4.38/2.03 4.38/2.03 (1) Loat Proof (FINISHED) 4.38/2.03 4.38/2.03 4.38/2.03 ### Pre-processing the ITS problem ### 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Initial linear ITS problem 4.38/2.03 4.38/2.03 Start location: f3 4.38/2.03 4.38/2.03 0: f0 -> f2 : [ 0>=A ], cost: 1 4.38/2.03 4.38/2.03 1: f0 -> f0 : A'=-1+A, B'=C, C'=-1+C, D'=A, [ A>=1 ], cost: 1 4.38/2.03 4.38/2.03 2: f1 -> f0 : A'=-1+A, C'=-1+C, E'=C, F'=A, [ A>=1 && C>=1 ], cost: 1 4.38/2.03 4.38/2.03 3: f2 -> f4 : G'=free, [ 0>=C ], cost: 1 4.38/2.03 4.38/2.03 4: f2 -> f0 : A'=free_1, [ free_1>=1 && C>=1 ], cost: 1 4.38/2.03 4.38/2.03 5: f3 -> f2 : A'=free_3, C'=free_2, [], cost: 1 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Removed unreachable and leaf rules: 4.38/2.03 4.38/2.03 Start location: f3 4.38/2.03 4.38/2.03 0: f0 -> f2 : [ 0>=A ], cost: 1 4.38/2.03 4.38/2.03 1: f0 -> f0 : A'=-1+A, B'=C, C'=-1+C, D'=A, [ A>=1 ], cost: 1 4.38/2.03 4.38/2.03 4: f2 -> f0 : A'=free_1, [ free_1>=1 && C>=1 ], cost: 1 4.38/2.03 4.38/2.03 5: f3 -> f2 : A'=free_3, C'=free_2, [], cost: 1 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 ### Simplification by acceleration and chaining ### 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Accelerating simple loops of location 0. 4.38/2.03 4.38/2.03 Accelerating the following rules: 4.38/2.03 4.38/2.03 1: f0 -> f0 : A'=-1+A, B'=C, C'=-1+C, D'=A, [ A>=1 ], cost: 1 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Accelerated rule 1 with metering function A, yielding the new rule 6. 4.38/2.03 4.38/2.03 Removing the simple loops: 1. 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Accelerated all simple loops using metering functions (where possible): 4.38/2.03 4.38/2.03 Start location: f3 4.38/2.03 4.38/2.03 0: f0 -> f2 : [ 0>=A ], cost: 1 4.38/2.03 4.38/2.03 6: f0 -> f0 : A'=0, B'=1+C-A, C'=C-A, D'=1, [ A>=1 ], cost: A 4.38/2.03 4.38/2.03 4: f2 -> f0 : A'=free_1, [ free_1>=1 && C>=1 ], cost: 1 4.38/2.03 4.38/2.03 5: f3 -> f2 : A'=free_3, C'=free_2, [], cost: 1 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Chained accelerated rules (with incoming rules): 4.38/2.03 4.38/2.03 Start location: f3 4.38/2.03 4.38/2.03 0: f0 -> f2 : [ 0>=A ], cost: 1 4.38/2.03 4.38/2.03 4: f2 -> f0 : A'=free_1, [ free_1>=1 && C>=1 ], cost: 1 4.38/2.03 4.38/2.03 7: f2 -> f0 : A'=0, B'=1+C-free_1, C'=C-free_1, D'=1, [ free_1>=1 && C>=1 ], cost: 1+free_1 4.38/2.03 4.38/2.03 5: f3 -> f2 : A'=free_3, C'=free_2, [], cost: 1 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Eliminated locations (on tree-shaped paths): 4.38/2.03 4.38/2.03 Start location: f3 4.38/2.03 4.38/2.03 8: f2 -> f2 : A'=0, B'=1+C-free_1, C'=C-free_1, D'=1, [ free_1>=1 && C>=1 ], cost: 2+free_1 4.38/2.03 4.38/2.03 5: f3 -> f2 : A'=free_3, C'=free_2, [], cost: 1 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Accelerating simple loops of location 2. 4.38/2.03 4.38/2.03 Accelerating the following rules: 4.38/2.03 4.38/2.03 8: f2 -> f2 : A'=0, B'=1+C-free_1, C'=C-free_1, D'=1, [ free_1>=1 && C>=1 ], cost: 2+free_1 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 During metering: Instantiating temporary variables by {free_1==1} 4.38/2.03 4.38/2.03 Accelerated rule 8 with metering function C, yielding the new rule 9. 4.38/2.03 4.38/2.03 Removing the simple loops: 8. 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Accelerated all simple loops using metering functions (where possible): 4.38/2.03 4.38/2.03 Start location: f3 4.38/2.03 4.38/2.03 9: f2 -> f2 : A'=0, B'=1, C'=0, D'=1, [ C>=1 ], cost: 3*C 4.38/2.03 4.38/2.03 5: f3 -> f2 : A'=free_3, C'=free_2, [], cost: 1 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Chained accelerated rules (with incoming rules): 4.38/2.03 4.38/2.03 Start location: f3 4.38/2.03 4.38/2.03 5: f3 -> f2 : A'=free_3, C'=free_2, [], cost: 1 4.38/2.03 4.38/2.03 10: f3 -> f2 : A'=0, B'=1, C'=0, D'=1, [ free_2>=1 ], cost: 1+3*free_2 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Removed unreachable locations (and leaf rules with constant cost): 4.38/2.03 4.38/2.03 Start location: f3 4.38/2.03 4.38/2.03 10: f3 -> f2 : A'=0, B'=1, C'=0, D'=1, [ free_2>=1 ], cost: 1+3*free_2 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 ### Computing asymptotic complexity ### 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Fully simplified ITS problem 4.38/2.03 4.38/2.03 Start location: f3 4.38/2.03 4.38/2.03 10: f3 -> f2 : A'=0, B'=1, C'=0, D'=1, [ free_2>=1 ], cost: 1+3*free_2 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Computing asymptotic complexity for rule 10 4.38/2.03 4.38/2.03 Solved the limit problem by the following transformations: 4.38/2.03 4.38/2.03 Created initial limit problem: 4.38/2.03 4.38/2.03 free_2 (+/+!), 1+3*free_2 (+) [not solved] 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 removing all constraints (solved by SMT) 4.38/2.03 4.38/2.03 resulting limit problem: [solved] 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 applying transformation rule (C) using substitution {free_2==n} 4.38/2.03 4.38/2.03 resulting limit problem: 4.38/2.03 4.38/2.03 [solved] 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Solution: 4.38/2.03 4.38/2.03 free_2 / n 4.38/2.03 4.38/2.03 Resulting cost 1+3*n has complexity: Unbounded 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Found new complexity Unbounded. 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 Obtained the following overall complexity (w.r.t. the length of the input n): 4.38/2.03 4.38/2.03 Complexity: Unbounded 4.38/2.03 4.38/2.03 Cpx degree: Unbounded 4.38/2.03 4.38/2.03 Solved cost: 1+3*n 4.38/2.03 4.38/2.03 Rule cost: 1+3*free_2 4.38/2.03 4.38/2.03 Rule guard: [ free_2>=1 ] 4.38/2.03 4.38/2.03 4.38/2.03 4.38/2.03 WORST_CASE(INF,?) 4.38/2.03 4.38/2.03 4.38/2.03 ---------------------------------------- 4.38/2.03 4.38/2.03 (2) 4.38/2.03 BOUNDS(INF, INF) 4.38/2.05 EOF