3.34/1.77 WORST_CASE(?, O(1)) 3.34/1.78 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 3.34/1.78 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.34/1.78 3.34/1.78 3.34/1.78 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). 3.34/1.78 3.34/1.78 (0) CpxIntTrs 3.34/1.78 (1) Koat Proof [FINISHED, 31 ms] 3.34/1.78 (2) BOUNDS(1, 1) 3.34/1.78 3.34/1.78 3.34/1.78 ---------------------------------------- 3.34/1.78 3.34/1.78 (0) 3.34/1.78 Obligation: 3.34/1.78 Complexity Int TRS consisting of the following rules: 3.34/1.78 f0(A, B, C, D, E) -> Com_1(f4(0, B, C, D, E)) :|: TRUE 3.34/1.78 f24(A, B, C, D, E) -> Com_1(f24(A, B + 1, B, D, E)) :|: 199 >= B 3.34/1.78 f24(A, B, C, D, E) -> Com_1(f37(A, B, C, D, E)) :|: B >= 200 3.34/1.78 f4(A, B, C, D, E) -> Com_1(f4(A + 1, B, C, A, A)) :|: 99 >= A 3.34/1.78 f4(A, B, C, D, E) -> Com_1(f24(A, 100, C, D, E)) :|: A >= 100 3.34/1.78 3.34/1.78 The start-symbols are:[f0_5] 3.34/1.78 3.34/1.78 3.34/1.78 ---------------------------------------- 3.34/1.78 3.34/1.78 (1) Koat Proof (FINISHED) 3.34/1.78 YES(?, 205) 3.34/1.78 3.34/1.78 3.34/1.78 3.34/1.78 Initial complexity problem: 3.34/1.78 3.34/1.78 1: T: 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(0, ar_1, ar_2, ar_3, ar_4)) 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f37(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.34/1.78 3.34/1.78 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.34/1.78 3.34/1.78 start location: koat_start 3.34/1.78 3.34/1.78 leaf cost: 0 3.34/1.78 3.34/1.78 3.34/1.78 3.34/1.78 Repeatedly propagating knowledge in problem 1 produces the following problem: 3.34/1.78 3.34/1.78 2: T: 3.34/1.78 3.34/1.78 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(0, ar_1, ar_2, ar_3, ar_4)) 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f37(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.34/1.78 3.34/1.78 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.34/1.78 3.34/1.78 start location: koat_start 3.34/1.78 3.34/1.78 leaf cost: 0 3.34/1.78 3.34/1.78 3.34/1.78 3.34/1.78 A polynomial rank function with 3.34/1.78 3.34/1.78 Pol(f0) = 2 3.34/1.78 3.34/1.78 Pol(f4) = 2 3.34/1.78 3.34/1.78 Pol(f24) = 1 3.34/1.78 3.34/1.78 Pol(f37) = 0 3.34/1.78 3.34/1.78 Pol(koat_start) = 2 3.34/1.78 3.34/1.78 orients all transitions weakly and the transitions 3.34/1.78 3.34/1.78 f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.34/1.78 3.34/1.78 f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f37(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.34/1.78 3.34/1.78 strictly and produces the following problem: 3.34/1.78 3.34/1.78 3: T: 3.34/1.78 3.34/1.78 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(0, ar_1, ar_2, ar_3, ar_4)) 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.34/1.78 3.34/1.78 (Comp: 2, Cost: 1) f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f37(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.34/1.78 3.34/1.78 (Comp: 2, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.34/1.78 3.34/1.78 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.34/1.78 3.34/1.78 start location: koat_start 3.34/1.78 3.34/1.78 leaf cost: 0 3.34/1.78 3.34/1.78 3.34/1.78 3.34/1.78 A polynomial rank function with 3.34/1.78 3.34/1.78 Pol(f0) = 100 3.34/1.78 3.34/1.78 Pol(f4) = 100 3.34/1.78 3.34/1.78 Pol(f24) = -V_2 + 200 3.34/1.78 3.34/1.78 Pol(f37) = -V_2 3.34/1.78 3.34/1.78 Pol(koat_start) = 100 3.34/1.78 3.34/1.78 orients all transitions weakly and the transition 3.34/1.78 3.34/1.78 f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.34/1.78 3.34/1.78 strictly and produces the following problem: 3.34/1.78 3.34/1.78 4: T: 3.34/1.78 3.34/1.78 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(0, ar_1, ar_2, ar_3, ar_4)) 3.34/1.78 3.34/1.78 (Comp: 100, Cost: 1) f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.34/1.78 3.34/1.78 (Comp: 2, Cost: 1) f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f37(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.34/1.78 3.34/1.78 (Comp: ?, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.34/1.78 3.34/1.78 (Comp: 2, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.34/1.78 3.34/1.78 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.34/1.78 3.34/1.78 start location: koat_start 3.34/1.78 3.34/1.78 leaf cost: 0 3.34/1.78 3.34/1.78 3.34/1.78 3.34/1.78 A polynomial rank function with 3.34/1.78 3.34/1.78 Pol(f0) = 100 3.34/1.78 3.34/1.78 Pol(f4) = -V_1 + 100 3.34/1.78 3.34/1.78 Pol(f24) = -V_1 3.34/1.78 3.34/1.78 Pol(f37) = -V_1 3.34/1.78 3.34/1.78 Pol(koat_start) = 100 3.34/1.78 3.34/1.78 orients all transitions weakly and the transition 3.34/1.78 3.34/1.78 f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.34/1.78 3.34/1.78 strictly and produces the following problem: 3.34/1.78 3.34/1.78 5: T: 3.34/1.78 3.34/1.78 (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(0, ar_1, ar_2, ar_3, ar_4)) 3.34/1.78 3.34/1.78 (Comp: 100, Cost: 1) f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, ar_1 + 1, ar_1, ar_3, ar_4)) [ 199 >= ar_1 ] 3.34/1.78 3.34/1.78 (Comp: 2, Cost: 1) f24(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f37(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_1 >= 200 ] 3.34/1.78 3.34/1.78 (Comp: 100, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f4(ar_0 + 1, ar_1, ar_2, ar_0, ar_0)) [ 99 >= ar_0 ] 3.34/1.78 3.34/1.78 (Comp: 2, Cost: 1) f4(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f24(ar_0, 100, ar_2, ar_3, ar_4)) [ ar_0 >= 100 ] 3.34/1.78 3.34/1.78 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] 3.34/1.78 3.34/1.78 start location: koat_start 3.34/1.78 3.34/1.78 leaf cost: 0 3.34/1.78 3.34/1.78 3.34/1.78 3.34/1.78 Complexity upper bound 205 3.34/1.78 3.34/1.78 3.34/1.78 3.34/1.78 Time: 0.099 sec (SMT: 0.089 sec) 3.34/1.78 3.34/1.78 3.34/1.78 ---------------------------------------- 3.34/1.78 3.34/1.78 (2) 3.34/1.78 BOUNDS(1, 1) 3.74/1.80 EOF