4.03/1.89 WORST_CASE(Omega(n^1), O(n^1)) 4.03/1.90 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.03/1.90 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.03/1.90 4.03/1.90 4.03/1.90 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). 4.03/1.90 4.03/1.90 (0) CpxIntTrs 4.03/1.90 (1) Koat Proof [FINISHED, 79 ms] 4.03/1.90 (2) BOUNDS(1, n^1) 4.03/1.90 (3) Loat Proof [FINISHED, 205 ms] 4.03/1.90 (4) BOUNDS(n^1, INF) 4.03/1.90 4.03/1.90 4.03/1.90 ---------------------------------------- 4.03/1.90 4.03/1.90 (0) 4.03/1.90 Obligation: 4.03/1.90 Complexity Int TRS consisting of the following rules: 4.03/1.90 f3(A, B, C, D) -> Com_1(f1(0, B, C, D)) :|: TRUE 4.03/1.90 f1(A, B, C, D) -> Com_1(f2(A, B, C, E)) :|: B >= C 4.03/1.90 f1(A, B, C, D) -> Com_1(f2(1, 1 + B, C, E)) :|: 0 >= A && B + 1 >= C && B + 1 <= C 4.03/1.90 f1(A, B, C, D) -> Com_1(f1(0, 1 + B, -(1) + C, D)) :|: C >= 1 + B && 0 >= A && C >= 2 + B 4.03/1.90 4.03/1.90 The start-symbols are:[f3_4] 4.03/1.90 4.03/1.90 4.03/1.90 ---------------------------------------- 4.03/1.90 4.03/1.90 (1) Koat Proof (FINISHED) 4.03/1.90 YES(?, ar_1 + ar_2 + 3) 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Initial complexity problem: 4.03/1.90 4.03/1.90 1: T: 4.03/1.90 4.03/1.90 (Comp: ?, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1, ar_2, ar_3)) 4.03/1.90 4.03/1.90 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_2 ] 4.03/1.90 4.03/1.90 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(1, ar_1 + 1, ar_2, e)) [ 0 >= ar_0 /\ ar_1 + 1 = ar_2 ] 4.03/1.90 4.03/1.90 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1 + 1, ar_2 - 1, ar_3)) [ ar_2 >= ar_1 + 1 /\ 0 >= ar_0 /\ ar_2 >= ar_1 + 2 ] 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.03/1.90 4.03/1.90 start location: koat_start 4.03/1.90 4.03/1.90 leaf cost: 0 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Repeatedly propagating knowledge in problem 1 produces the following problem: 4.03/1.90 4.03/1.90 2: T: 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1, ar_2, ar_3)) 4.03/1.90 4.03/1.90 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_2 ] 4.03/1.90 4.03/1.90 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(1, ar_1 + 1, ar_2, e)) [ 0 >= ar_0 /\ ar_1 + 1 = ar_2 ] 4.03/1.90 4.03/1.90 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1 + 1, ar_2 - 1, ar_3)) [ ar_2 >= ar_1 + 1 /\ 0 >= ar_0 /\ ar_2 >= ar_1 + 2 ] 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.03/1.90 4.03/1.90 start location: koat_start 4.03/1.90 4.03/1.90 leaf cost: 0 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 A polynomial rank function with 4.03/1.90 4.03/1.90 Pol(f3) = 1 4.03/1.90 4.03/1.90 Pol(f1) = 1 4.03/1.90 4.03/1.90 Pol(f2) = 0 4.03/1.90 4.03/1.90 Pol(koat_start) = 1 4.03/1.90 4.03/1.90 orients all transitions weakly and the transitions 4.03/1.90 4.03/1.90 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(1, ar_1 + 1, ar_2, e)) [ 0 >= ar_0 /\ ar_1 + 1 = ar_2 ] 4.03/1.90 4.03/1.90 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_2 ] 4.03/1.90 4.03/1.90 strictly and produces the following problem: 4.03/1.90 4.03/1.90 3: T: 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1, ar_2, ar_3)) 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_2 ] 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(1, ar_1 + 1, ar_2, e)) [ 0 >= ar_0 /\ ar_1 + 1 = ar_2 ] 4.03/1.90 4.03/1.90 (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1 + 1, ar_2 - 1, ar_3)) [ ar_2 >= ar_1 + 1 /\ 0 >= ar_0 /\ ar_2 >= ar_1 + 2 ] 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.03/1.90 4.03/1.90 start location: koat_start 4.03/1.90 4.03/1.90 leaf cost: 0 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 A polynomial rank function with 4.03/1.90 4.03/1.90 Pol(f3) = -V_2 + V_3 4.03/1.90 4.03/1.90 Pol(f1) = -V_2 + V_3 4.03/1.90 4.03/1.90 Pol(f2) = -V_2 + V_3 4.03/1.90 4.03/1.90 Pol(koat_start) = -V_2 + V_3 4.03/1.90 4.03/1.90 orients all transitions weakly and the transition 4.03/1.90 4.03/1.90 f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1 + 1, ar_2 - 1, ar_3)) [ ar_2 >= ar_1 + 1 /\ 0 >= ar_0 /\ ar_2 >= ar_1 + 2 ] 4.03/1.90 4.03/1.90 strictly and produces the following problem: 4.03/1.90 4.03/1.90 4: T: 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1, ar_2, ar_3)) 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_2 ] 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(1, ar_1 + 1, ar_2, e)) [ 0 >= ar_0 /\ ar_1 + 1 = ar_2 ] 4.03/1.90 4.03/1.90 (Comp: ar_1 + ar_2, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(0, ar_1 + 1, ar_2 - 1, ar_3)) [ ar_2 >= ar_1 + 1 /\ 0 >= ar_0 /\ ar_2 >= ar_1 + 2 ] 4.03/1.90 4.03/1.90 (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] 4.03/1.90 4.03/1.90 start location: koat_start 4.03/1.90 4.03/1.90 leaf cost: 0 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Complexity upper bound ar_1 + ar_2 + 3 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Time: 0.096 sec (SMT: 0.076 sec) 4.03/1.90 4.03/1.90 4.03/1.90 ---------------------------------------- 4.03/1.90 4.03/1.90 (2) 4.03/1.90 BOUNDS(1, n^1) 4.03/1.90 4.03/1.90 ---------------------------------------- 4.03/1.90 4.03/1.90 (3) Loat Proof (FINISHED) 4.03/1.90 4.03/1.90 4.03/1.90 ### Pre-processing the ITS problem ### 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Initial linear ITS problem 4.03/1.90 4.03/1.90 Start location: f3 4.03/1.90 4.03/1.90 0: f3 -> f1 : A'=0, [], cost: 1 4.03/1.90 4.03/1.90 1: f1 -> f2 : D'=free, [ B>=C ], cost: 1 4.03/1.90 4.03/1.90 2: f1 -> f2 : A'=1, B'=1+B, D'=free_1, [ 0>=A && 1+B==C ], cost: 1 4.03/1.90 4.03/1.90 3: f1 -> f1 : A'=0, B'=1+B, C'=-1+C, [ C>=1+B && 0>=A && C>=2+B ], cost: 1 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Removed unreachable and leaf rules: 4.03/1.90 4.03/1.90 Start location: f3 4.03/1.90 4.03/1.90 0: f3 -> f1 : A'=0, [], cost: 1 4.03/1.90 4.03/1.90 3: f1 -> f1 : A'=0, B'=1+B, C'=-1+C, [ C>=1+B && 0>=A && C>=2+B ], cost: 1 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Simplified all rules, resulting in: 4.03/1.90 4.03/1.90 Start location: f3 4.03/1.90 4.03/1.90 0: f3 -> f1 : A'=0, [], cost: 1 4.03/1.90 4.03/1.90 3: f1 -> f1 : A'=0, B'=1+B, C'=-1+C, [ 0>=A && C>=2+B ], cost: 1 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 ### Simplification by acceleration and chaining ### 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Accelerating simple loops of location 1. 4.03/1.90 4.03/1.90 Accelerating the following rules: 4.03/1.90 4.03/1.90 3: f1 -> f1 : A'=0, B'=1+B, C'=-1+C, [ 0>=A && C>=2+B ], cost: 1 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Accelerated rule 3 with metering function meter (where 2*meter==-1+C-B), yielding the new rule 4. 4.03/1.90 4.03/1.90 Removing the simple loops: 3. 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Accelerated all simple loops using metering functions (where possible): 4.03/1.90 4.03/1.90 Start location: f3 4.03/1.90 4.03/1.90 0: f3 -> f1 : A'=0, [], cost: 1 4.03/1.90 4.03/1.90 4: f1 -> f1 : A'=0, B'=meter+B, C'=C-meter, [ 0>=A && C>=2+B && 2*meter==-1+C-B && meter>=1 ], cost: meter 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Chained accelerated rules (with incoming rules): 4.03/1.90 4.03/1.90 Start location: f3 4.03/1.90 4.03/1.90 0: f3 -> f1 : A'=0, [], cost: 1 4.03/1.90 4.03/1.90 5: f3 -> f1 : A'=0, B'=meter+B, C'=C-meter, [ C>=2+B && 2*meter==-1+C-B && meter>=1 ], cost: 1+meter 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Removed unreachable locations (and leaf rules with constant cost): 4.03/1.90 4.03/1.90 Start location: f3 4.03/1.90 4.03/1.90 5: f3 -> f1 : A'=0, B'=meter+B, C'=C-meter, [ C>=2+B && 2*meter==-1+C-B && meter>=1 ], cost: 1+meter 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 ### Computing asymptotic complexity ### 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Fully simplified ITS problem 4.03/1.90 4.03/1.90 Start location: f3 4.03/1.90 4.03/1.90 5: f3 -> f1 : A'=0, B'=meter+B, C'=C-meter, [ C>=2+B && 2*meter==-1+C-B && meter>=1 ], cost: 1+meter 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Computing asymptotic complexity for rule 5 4.03/1.90 4.03/1.90 Solved the limit problem by the following transformations: 4.03/1.90 4.03/1.90 Created initial limit problem: 4.03/1.90 4.03/1.90 C-2*meter-B (+/+!), 2-C+2*meter+B (+/+!), 1+meter (+), -1+C-B (+/+!) [not solved] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 applying transformation rule (C) using substitution {C==1+2*meter+B} 4.03/1.90 4.03/1.90 resulting limit problem: 4.03/1.90 4.03/1.90 1 (+/+!), 1+meter (+), 2*meter (+/+!) [not solved] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 applying transformation rule (B), deleting 1 (+/+!) 4.03/1.90 4.03/1.90 resulting limit problem: 4.03/1.90 4.03/1.90 1+meter (+), 2*meter (+/+!) [not solved] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 removing all constraints (solved by SMT) 4.03/1.90 4.03/1.90 resulting limit problem: [solved] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 applying transformation rule (C) using substitution {meter==n} 4.03/1.90 4.03/1.90 resulting limit problem: 4.03/1.90 4.03/1.90 [solved] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Solved the limit problem by the following transformations: 4.03/1.90 4.03/1.90 Created initial limit problem: 4.03/1.90 4.03/1.90 C-2*meter-B (+/+!), 2-C+2*meter+B (+/+!), 1+meter (+), -1+C-B (+/+!) [not solved] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 applying transformation rule (C) using substitution {C==1+2*meter+B} 4.03/1.90 4.03/1.90 resulting limit problem: 4.03/1.90 4.03/1.90 1 (+/+!), 1+meter (+), 2*meter (+/+!) [not solved] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 applying transformation rule (B), deleting 1 (+/+!) 4.03/1.90 4.03/1.90 resulting limit problem: 4.03/1.90 4.03/1.90 1+meter (+), 2*meter (+/+!) [not solved] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 removing all constraints (solved by SMT) 4.03/1.90 4.03/1.90 resulting limit problem: [solved] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 applying transformation rule (C) using substitution {meter==n} 4.03/1.90 4.03/1.90 resulting limit problem: 4.03/1.90 4.03/1.90 [solved] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Solution: 4.03/1.90 4.03/1.90 C / 1+2*n 4.03/1.90 4.03/1.90 meter / n 4.03/1.90 4.03/1.90 B / 0 4.03/1.90 4.03/1.90 Resulting cost 1+n has complexity: Poly(n^1) 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Found new complexity Poly(n^1). 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 Obtained the following overall complexity (w.r.t. the length of the input n): 4.03/1.90 4.03/1.90 Complexity: Poly(n^1) 4.03/1.90 4.03/1.90 Cpx degree: 1 4.03/1.90 4.03/1.90 Solved cost: 1+n 4.03/1.90 4.03/1.90 Rule cost: 1+meter 4.03/1.90 4.03/1.90 Rule guard: [ C>=2+B && 2*meter==-1+C-B ] 4.03/1.90 4.03/1.90 4.03/1.90 4.03/1.90 WORST_CASE(Omega(n^1),?) 4.03/1.90 4.03/1.90 4.03/1.90 ---------------------------------------- 4.03/1.90 4.03/1.90 (4) 4.03/1.90 BOUNDS(n^1, INF) 4.03/1.92 EOF