4.13/1.98 WORST_CASE(Omega(n^1), O(n^2)) 4.13/1.98 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.13/1.98 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.13/1.98 4.13/1.98 4.13/1.98 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + Arg_1 + -1 * Arg_2) + nat(Arg_0 + -1 * Arg_1) + nat(Arg_0 * Arg_1 + -1 * Arg_0 * Arg_2 + Arg_0 * nat(Arg_0 + -1 * Arg_1) + Arg_1 * Arg_2 + -1 * Arg_1 * nat(Arg_0 + -1 * Arg_1) + -1 * Arg_1^2)). 4.13/1.98 4.13/1.98 (0) CpxIntTrs 4.13/1.98 (1) Koat2 Proof [FINISHED, 201 ms] 4.13/1.98 (2) BOUNDS(1, max(1, 1 + Arg_1 + -1 * Arg_2) + nat(Arg_0 + -1 * Arg_1) + nat(Arg_0 * Arg_1 + -1 * Arg_0 * Arg_2 + Arg_0 * nat(Arg_0 + -1 * Arg_1) + Arg_1 * Arg_2 + -1 * Arg_1 * nat(Arg_0 + -1 * Arg_1) + -1 * Arg_1^2)) 4.13/1.98 (3) Loat Proof [FINISHED, 314 ms] 4.13/1.98 (4) BOUNDS(n^1, INF) 4.13/1.98 4.13/1.98 4.13/1.98 ---------------------------------------- 4.13/1.98 4.13/1.98 (0) 4.13/1.98 Obligation: 4.13/1.98 Complexity Int TRS consisting of the following rules: 4.13/1.98 f1(A, B, C) -> Com_1(f1(A, B + 1, C)) :|: A >= B + 1 4.13/1.98 f3(A, B, C) -> Com_1(f1(A, B, C)) :|: B >= C + 1 4.13/1.98 f1(A, B, C) -> Com_1(f1(A, B, C + 1)) :|: B >= C + 2 && B >= A 4.13/1.99 4.13/1.99 The start-symbols are:[f3_3] 4.13/1.99 4.13/1.99 4.13/1.99 ---------------------------------------- 4.13/1.99 4.13/1.99 (1) Koat2 Proof (FINISHED) 4.13/1.99 YES( ?, 1+max([0, Arg_1-Arg_2])+max([0, (Arg_0-Arg_1)*(Arg_1-Arg_2+max([0, Arg_0-Arg_1]))])+max([0, Arg_0-Arg_1]) {O(n^2)}) 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Initial Complexity Problem: 4.13/1.99 4.13/1.99 Start: f3 4.13/1.99 4.13/1.99 Program_Vars: Arg_0, Arg_1, Arg_2 4.13/1.99 4.13/1.99 Temp_Vars: 4.13/1.99 4.13/1.99 Locations: f1, f3 4.13/1.99 4.13/1.99 Transitions: 4.13/1.99 4.13/1.99 f1(Arg_0,Arg_1,Arg_2) -> f1(Arg_0,Arg_1+1,Arg_2):|:1+Arg_2 <= Arg_1 && Arg_1+1 <= Arg_0 4.13/1.99 4.13/1.99 f1(Arg_0,Arg_1,Arg_2) -> f1(Arg_0,Arg_1,Arg_2+1):|:1+Arg_2 <= Arg_1 && Arg_2+2 <= Arg_1 && Arg_0 <= Arg_1 4.13/1.99 4.13/1.99 f3(Arg_0,Arg_1,Arg_2) -> f1(Arg_0,Arg_1,Arg_2):|:Arg_2+1 <= Arg_1 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Timebounds: 4.13/1.99 4.13/1.99 Overall timebound: 1+max([0, Arg_1-Arg_2])+max([0, (Arg_0-Arg_1)*(Arg_1-Arg_2+max([0, Arg_0-Arg_1]))])+max([0, Arg_0-Arg_1]) {O(n^2)} 4.13/1.99 4.13/1.99 0: f1->f1: max([0, Arg_0-Arg_1]) {O(n)} 4.13/1.99 4.13/1.99 2: f1->f1: max([0, Arg_1-Arg_2])+max([0, (Arg_0-Arg_1)*(Arg_1-Arg_2+max([0, Arg_0-Arg_1]))]) {O(n^2)} 4.13/1.99 4.13/1.99 1: f3->f1: 1 {O(1)} 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Costbounds: 4.13/1.99 4.13/1.99 Overall costbound: 1+max([0, Arg_1-Arg_2])+max([0, (Arg_0-Arg_1)*(Arg_1-Arg_2+max([0, Arg_0-Arg_1]))])+max([0, Arg_0-Arg_1]) {O(n^2)} 4.13/1.99 4.13/1.99 0: f1->f1: max([0, Arg_0-Arg_1]) {O(n)} 4.13/1.99 4.13/1.99 2: f1->f1: max([0, Arg_1-Arg_2])+max([0, (Arg_0-Arg_1)*(Arg_1-Arg_2+max([0, Arg_0-Arg_1]))]) {O(n^2)} 4.13/1.99 4.13/1.99 1: f3->f1: 1 {O(1)} 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Sizebounds: 4.13/1.99 4.13/1.99 `Lower: 4.13/1.99 4.13/1.99 0: f1->f1, Arg_0: Arg_0 {O(n)} 4.13/1.99 4.13/1.99 0: f1->f1, Arg_1: Arg_1 {O(n)} 4.13/1.99 4.13/1.99 0: f1->f1, Arg_2: Arg_2 {O(n)} 4.13/1.99 4.13/1.99 2: f1->f1, Arg_0: Arg_0 {O(n)} 4.13/1.99 4.13/1.99 2: f1->f1, Arg_1: Arg_1 {O(n)} 4.13/1.99 4.13/1.99 2: f1->f1, Arg_2: Arg_2 {O(n)} 4.13/1.99 4.13/1.99 1: f3->f1, Arg_0: Arg_0 {O(n)} 4.13/1.99 4.13/1.99 1: f3->f1, Arg_1: Arg_1 {O(n)} 4.13/1.99 4.13/1.99 1: f3->f1, Arg_2: Arg_2 {O(n)} 4.13/1.99 4.13/1.99 `Upper: 4.13/1.99 4.13/1.99 0: f1->f1, Arg_0: Arg_0 {O(n)} 4.13/1.99 4.13/1.99 0: f1->f1, Arg_1: Arg_1+max([0, Arg_0-Arg_1]) {O(n)} 4.13/1.99 4.13/1.99 0: f1->f1, Arg_2: Arg_2 {O(n)} 4.13/1.99 4.13/1.99 2: f1->f1, Arg_0: Arg_0 {O(n)} 4.13/1.99 4.13/1.99 2: f1->f1, Arg_1: max([Arg_1, Arg_1+max([0, Arg_0-Arg_1])]) {O(n)} 4.13/1.99 4.13/1.99 2: f1->f1, Arg_2: Arg_2+max([0, Arg_1-Arg_2])+max([0, (Arg_0-Arg_1)*(Arg_1-Arg_2+max([0, Arg_0-Arg_1]))]) {O(n^2)} 4.13/1.99 4.13/1.99 1: f3->f1, Arg_0: Arg_0 {O(n)} 4.13/1.99 4.13/1.99 1: f3->f1, Arg_1: Arg_1 {O(n)} 4.13/1.99 4.13/1.99 1: f3->f1, Arg_2: Arg_2 {O(n)} 4.13/1.99 4.13/1.99 4.13/1.99 ---------------------------------------- 4.13/1.99 4.13/1.99 (2) 4.13/1.99 BOUNDS(1, max(1, 1 + Arg_1 + -1 * Arg_2) + nat(Arg_0 + -1 * Arg_1) + nat(Arg_0 * Arg_1 + -1 * Arg_0 * Arg_2 + Arg_0 * nat(Arg_0 + -1 * Arg_1) + Arg_1 * Arg_2 + -1 * Arg_1 * nat(Arg_0 + -1 * Arg_1) + -1 * Arg_1^2)) 4.13/1.99 4.13/1.99 ---------------------------------------- 4.13/1.99 4.13/1.99 (3) Loat Proof (FINISHED) 4.13/1.99 4.13/1.99 4.13/1.99 ### Pre-processing the ITS problem ### 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Initial linear ITS problem 4.13/1.99 4.13/1.99 Start location: f3 4.13/1.99 4.13/1.99 0: f1 -> f1 : B'=1+B, [ A>=1+B ], cost: 1 4.13/1.99 4.13/1.99 2: f1 -> f1 : C'=1+C, [ B>=2+C && B>=A ], cost: 1 4.13/1.99 4.13/1.99 1: f3 -> f1 : [ B>=1+C ], cost: 1 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 ### Simplification by acceleration and chaining ### 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Accelerating simple loops of location 0. 4.13/1.99 4.13/1.99 Accelerating the following rules: 4.13/1.99 4.13/1.99 0: f1 -> f1 : B'=1+B, [ A>=1+B ], cost: 1 4.13/1.99 4.13/1.99 2: f1 -> f1 : C'=1+C, [ B>=2+C && B>=A ], cost: 1 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Accelerated rule 0 with metering function A-B, yielding the new rule 3. 4.13/1.99 4.13/1.99 Accelerated rule 2 with metering function -1-C+B, yielding the new rule 4. 4.13/1.99 4.13/1.99 Removing the simple loops: 0 2. 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Accelerated all simple loops using metering functions (where possible): 4.13/1.99 4.13/1.99 Start location: f3 4.13/1.99 4.13/1.99 3: f1 -> f1 : B'=A, [ A>=1+B ], cost: A-B 4.13/1.99 4.13/1.99 4: f1 -> f1 : C'=-1+B, [ B>=2+C && B>=A ], cost: -1-C+B 4.13/1.99 4.13/1.99 1: f3 -> f1 : [ B>=1+C ], cost: 1 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Chained accelerated rules (with incoming rules): 4.13/1.99 4.13/1.99 Start location: f3 4.13/1.99 4.13/1.99 1: f3 -> f1 : [ B>=1+C ], cost: 1 4.13/1.99 4.13/1.99 5: f3 -> f1 : B'=A, [ B>=1+C && A>=1+B ], cost: 1+A-B 4.13/1.99 4.13/1.99 6: f3 -> f1 : C'=-1+B, [ B>=2+C && B>=A ], cost: -C+B 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Removed unreachable locations (and leaf rules with constant cost): 4.13/1.99 4.13/1.99 Start location: f3 4.13/1.99 4.13/1.99 5: f3 -> f1 : B'=A, [ B>=1+C && A>=1+B ], cost: 1+A-B 4.13/1.99 4.13/1.99 6: f3 -> f1 : C'=-1+B, [ B>=2+C && B>=A ], cost: -C+B 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 ### Computing asymptotic complexity ### 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Fully simplified ITS problem 4.13/1.99 4.13/1.99 Start location: f3 4.13/1.99 4.13/1.99 5: f3 -> f1 : B'=A, [ B>=1+C && A>=1+B ], cost: 1+A-B 4.13/1.99 4.13/1.99 6: f3 -> f1 : C'=-1+B, [ B>=2+C && B>=A ], cost: -C+B 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Computing asymptotic complexity for rule 5 4.13/1.99 4.13/1.99 Solved the limit problem by the following transformations: 4.13/1.99 4.13/1.99 Created initial limit problem: 4.13/1.99 4.13/1.99 -C+B (+/+!), 1+A-B (+), A-B (+/+!) [not solved] 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 applying transformation rule (C) using substitution {B==1+C} 4.13/1.99 4.13/1.99 resulting limit problem: 4.13/1.99 4.13/1.99 1 (+/+!), -1-C+A (+/+!), -C+A (+) [not solved] 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 applying transformation rule (C) using substitution {A==1+B} 4.13/1.99 4.13/1.99 resulting limit problem: 4.13/1.99 4.13/1.99 1 (+/+!), 1-C+B (+), -C+B (+/+!) [not solved] 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 applying transformation rule (B), deleting 1 (+/+!) 4.13/1.99 4.13/1.99 resulting limit problem: 4.13/1.99 4.13/1.99 1-C+B (+), -C+B (+/+!) [not solved] 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 removing all constraints (solved by SMT) 4.13/1.99 4.13/1.99 resulting limit problem: [solved] 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 applying transformation rule (C) using substitution {C==-2*n,B==-n} 4.13/1.99 4.13/1.99 resulting limit problem: 4.13/1.99 4.13/1.99 [solved] 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Solution: 4.13/1.99 4.13/1.99 C / -2*n 4.13/1.99 4.13/1.99 A / 1-n 4.13/1.99 4.13/1.99 B / 1-2*n 4.13/1.99 4.13/1.99 Resulting cost 1+n has complexity: Poly(n^1) 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Found new complexity Poly(n^1). 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 Obtained the following overall complexity (w.r.t. the length of the input n): 4.13/1.99 4.13/1.99 Complexity: Poly(n^1) 4.13/1.99 4.13/1.99 Cpx degree: 1 4.13/1.99 4.13/1.99 Solved cost: 1+n 4.13/1.99 4.13/1.99 Rule cost: 1+A-B 4.13/1.99 4.13/1.99 Rule guard: [ B>=1+C && A>=1+B ] 4.13/1.99 4.13/1.99 4.13/1.99 4.13/1.99 WORST_CASE(Omega(n^1),?) 4.13/1.99 4.13/1.99 4.13/1.99 ---------------------------------------- 4.13/1.99 4.13/1.99 (4) 4.13/1.99 BOUNDS(n^1, INF) 4.34/2.00 EOF