4.80/2.20 WORST_CASE(NON_POLY, ?) 4.83/2.21 proof of /export/starexec/sandbox/benchmark/theBenchmark.koat 4.83/2.21 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.83/2.21 4.83/2.21 4.83/2.21 The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). 4.83/2.21 4.83/2.21 (0) CpxIntTrs 4.83/2.21 (1) Loat Proof [FINISHED, 510 ms] 4.83/2.21 (2) BOUNDS(INF, INF) 4.83/2.21 4.83/2.21 4.83/2.21 ---------------------------------------- 4.83/2.21 4.83/2.21 (0) 4.83/2.21 Obligation: 4.83/2.21 Complexity Int TRS consisting of the following rules: 4.83/2.21 f2(A, B) -> Com_1(f2(A - 1, B)) :|: A >= 1 4.83/2.21 f0(A, B) -> Com_1(f2(C, B - 1)) :|: B >= 1 4.83/2.21 f2(A, B) -> Com_1(f2(C, B - 1)) :|: B >= 1 && 0 >= A 4.83/2.21 4.83/2.21 The start-symbols are:[f0_2] 4.83/2.21 4.83/2.21 4.83/2.21 ---------------------------------------- 4.83/2.21 4.83/2.21 (1) Loat Proof (FINISHED) 4.83/2.21 4.83/2.21 4.83/2.21 ### Pre-processing the ITS problem ### 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Initial linear ITS problem 4.83/2.21 4.83/2.21 Start location: f0 4.83/2.21 4.83/2.21 0: f2 -> f2 : A'=-1+A, [ A>=1 ], cost: 1 4.83/2.21 4.83/2.21 2: f2 -> f2 : A'=free_1, B'=-1+B, [ B>=1 && 0>=A ], cost: 1 4.83/2.21 4.83/2.21 1: f0 -> f2 : A'=free, B'=-1+B, [ B>=1 ], cost: 1 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 ### Simplification by acceleration and chaining ### 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Accelerating simple loops of location 0. 4.83/2.21 4.83/2.21 Accelerating the following rules: 4.83/2.21 4.83/2.21 0: f2 -> f2 : A'=-1+A, [ A>=1 ], cost: 1 4.83/2.21 4.83/2.21 2: f2 -> f2 : A'=free_1, B'=-1+B, [ B>=1 && 0>=A ], cost: 1 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Accelerated rule 0 with metering function A, yielding the new rule 3. 4.83/2.21 4.83/2.21 Accelerated rule 2 with metering function B (after strengthening guard), yielding the new rule 4. 4.83/2.21 4.83/2.21 Nested simple loops 2 (outer loop) and 3 (inner loop) with metering function B, resulting in the new rules: 5, 6. 4.83/2.21 4.83/2.21 During metering: Instantiating temporary variables by {free_1==0} 4.83/2.21 4.83/2.21 Removing the simple loops: 0 2. 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Accelerated all simple loops using metering functions (where possible): 4.83/2.21 4.83/2.21 Start location: f0 4.83/2.21 4.83/2.21 3: f2 -> f2 : A'=0, [ A>=1 ], cost: A 4.83/2.21 4.83/2.21 4: f2 -> f2 : A'=free_1, B'=0, [ B>=1 && 0>=A && 0>=free_1 ], cost: B 4.83/2.21 4.83/2.21 5: f2 -> f2 : A'=0, B'=0, [ B>=1 && 0>=A && free_1>=1 ], cost: free_1*B+B 4.83/2.21 4.83/2.21 6: f2 -> f2 : A'=0, B'=0, [ A>=1 && B>=1 && free_1>=1 ], cost: A+free_1*B+B 4.83/2.21 4.83/2.21 1: f0 -> f2 : A'=free, B'=-1+B, [ B>=1 ], cost: 1 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Chained accelerated rules (with incoming rules): 4.83/2.21 4.83/2.21 Start location: f0 4.83/2.21 4.83/2.21 1: f0 -> f2 : A'=free, B'=-1+B, [ B>=1 ], cost: 1 4.83/2.21 4.83/2.21 7: f0 -> f2 : A'=0, B'=-1+B, [ B>=1 && free>=1 ], cost: 1+free 4.83/2.21 4.83/2.21 8: f0 -> f2 : A'=free_1, B'=0, [ -1+B>=1 && 0>=free_1 ], cost: B 4.83/2.21 4.83/2.21 9: f0 -> f2 : A'=0, B'=0, [ -1+B>=1 && free_1>=1 ], cost: (-1+B)*free_1+B 4.83/2.21 4.83/2.21 10: f0 -> f2 : A'=0, B'=0, [ free>=1 && -1+B>=1 && free_1>=1 ], cost: (-1+B)*free_1+free+B 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Removed unreachable locations (and leaf rules with constant cost): 4.83/2.21 4.83/2.21 Start location: f0 4.83/2.21 4.83/2.21 7: f0 -> f2 : A'=0, B'=-1+B, [ B>=1 && free>=1 ], cost: 1+free 4.83/2.21 4.83/2.21 8: f0 -> f2 : A'=free_1, B'=0, [ -1+B>=1 && 0>=free_1 ], cost: B 4.83/2.21 4.83/2.21 9: f0 -> f2 : A'=0, B'=0, [ -1+B>=1 && free_1>=1 ], cost: (-1+B)*free_1+B 4.83/2.21 4.83/2.21 10: f0 -> f2 : A'=0, B'=0, [ free>=1 && -1+B>=1 && free_1>=1 ], cost: (-1+B)*free_1+free+B 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 ### Computing asymptotic complexity ### 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Fully simplified ITS problem 4.83/2.21 4.83/2.21 Start location: f0 4.83/2.21 4.83/2.21 7: f0 -> f2 : A'=0, B'=-1+B, [ B>=1 && free>=1 ], cost: 1+free 4.83/2.21 4.83/2.21 8: f0 -> f2 : A'=free_1, B'=0, [ -1+B>=1 && 0>=free_1 ], cost: B 4.83/2.21 4.83/2.21 9: f0 -> f2 : A'=0, B'=0, [ -1+B>=1 && free_1>=1 ], cost: (-1+B)*free_1+B 4.83/2.21 4.83/2.21 10: f0 -> f2 : A'=0, B'=0, [ free>=1 && -1+B>=1 && free_1>=1 ], cost: (-1+B)*free_1+free+B 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Computing asymptotic complexity for rule 7 4.83/2.21 4.83/2.21 Solved the limit problem by the following transformations: 4.83/2.21 4.83/2.21 Created initial limit problem: 4.83/2.21 4.83/2.21 free (+/+!), 1+free (+), B (+/+!) [not solved] 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 removing all constraints (solved by SMT) 4.83/2.21 4.83/2.21 resulting limit problem: [solved] 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 applying transformation rule (C) using substitution {free==n,B==1} 4.83/2.21 4.83/2.21 resulting limit problem: 4.83/2.21 4.83/2.21 [solved] 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Solution: 4.83/2.21 4.83/2.21 free / n 4.83/2.21 4.83/2.21 B / 1 4.83/2.21 4.83/2.21 Resulting cost 1+n has complexity: Unbounded 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Found new complexity Unbounded. 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 Obtained the following overall complexity (w.r.t. the length of the input n): 4.83/2.21 4.83/2.21 Complexity: Unbounded 4.83/2.21 4.83/2.21 Cpx degree: Unbounded 4.83/2.21 4.83/2.21 Solved cost: 1+n 4.83/2.21 4.83/2.21 Rule cost: 1+free 4.83/2.21 4.83/2.21 Rule guard: [ B>=1 && free>=1 ] 4.83/2.21 4.83/2.21 4.83/2.21 4.83/2.21 WORST_CASE(INF,?) 4.83/2.21 4.83/2.21 4.83/2.21 ---------------------------------------- 4.83/2.21 4.83/2.21 (2) 4.83/2.21 BOUNDS(INF, INF) 4.86/2.24 EOF